Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant ; 17(5): 824-837, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38520090

RESUMO

In plants and mammals, non-homologous end-joining is the dominant pathway to repair DNA double-strand breaks, making it challenging to generate knock-in events. In this study, we identified two groups of exonucleases from the herpes virus and the bacteriophage T7 families that conferred an up to 38-fold increase in homology-directed repair frequencies when fused to Cas9/Cas12a in a tobacco mosaic virus-based transient assay in Nicotiana benthamiana. We achieved precise and scar-free insertion of several kilobases of DNA both in transient and stable transformation systems. In Arabidopsis thaliana, fusion of Cas9 to a herpes virus family exonuclease led to 10-fold higher frequencies of knock-ins in the first generation of transformants. In addition, we demonstrated stable and heritable knock-ins in wheat in 1% of the primary transformants. Taken together, our results open perspectives for the routine production of heritable knock-in and gene replacement events in plants.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Introdução de Genes , Nicotiana , Sistemas CRISPR-Cas/genética , Nicotiana/genética , Arabidopsis/genética , Arabidopsis/enzimologia , Triticum/genética , Endonucleases/metabolismo , Endonucleases/genética , Plantas Geneticamente Modificadas
3.
Micromachines (Basel) ; 13(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36295914

RESUMO

This paper reports on the deposition and characterization of piezoelectric AlXSc1-XN (further: AlScN) films on Si substrates using AlSc alloy targets with 30 at.% Sc. Films were deposited on a Ø200 mm area with deposition rates of 200 nm/min using a reactive magnetron sputtering process with a unipolar-bipolar hybrid pulse mode of FEP. The homogeneity of film composition, structural properties and piezoelectric properties were investigated depending on process parameters, especially the pulse mode of powering in unipolar-bipolar hybrid pulse mode operation. Characterization methods include energy-dispersive spectrometry of X-ray (EDS), X-ray diffraction (XRD), piezoresponse force microscopy (PFM) and double-beam laser interferometry (DBLI). The film composition was Al0.695Sc0.295N. The films showed good homogeneity of film structure with full width at half maximum (FWHM) of AlScN(002) rocking curves at 2.2 ± 0.1° over the whole coating area when deposited with higher share of unipolar pulse mode during film growth. For a higher share of bipolar pulse mode, the films showed a much larger c-lattice parameter in the center of the coating area, indicating high in-plane compressive stress in the films. Rocking curve FWHM also showed similar values of 1.5° at the center to 3° at outer edge. The piezoelectric characterization method revealed homogenous d33,f of 11-12 pm/V for films deposited at a high share of unipolar pulse mode and distribution of 7-10 pm/V for a lower share of unipolar pulse mode. The films exhibited ferroelectric switching behavior with coercive fields of around 3-3.5 MV/cm and polarization of 80-120 µC/cm².

4.
Plant Biotechnol J ; 20(9): 1786-1806, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35639605

RESUMO

In biological discovery and engineering research, there is a need to spatially and/or temporally regulate transgene expression. However, the limited availability of promoter sequences that are uniquely active in specific tissue-types and/or at specific times often precludes co-expression of multiple transgenes in precisely controlled developmental contexts. Here, we developed a system for use in rice that comprises synthetic designer transcription activator-like effectors (dTALEs) and cognate synthetic TALE-activated promoters (STAPs). The system allows multiple transgenes to be expressed from different STAPs, with the spatial and temporal context determined by a single promoter that drives expression of the dTALE. We show that two different systems-dTALE1-STAP1 and dTALE2-STAP2-can activate STAP-driven reporter gene expression in stable transgenic rice lines, with transgene transcript levels dependent on both dTALE and STAP sequence identities. The relative strength of individual STAP sequences is consistent between dTALE1 and dTALE2 systems but differs between cell-types, requiring empirical evaluation in each case. dTALE expression leads to off-target activation of endogenous genes but the number of genes affected is substantially less than the number impacted by the somaclonal variation that occurs during the regeneration of transformed plants. With the potential to design fully orthogonal dTALEs for any genome of interest, the dTALE-STAP system thus provides a powerful approach to fine-tune the expression of multiple transgenes, and to simultaneously introduce different synthetic circuits into distinct developmental contexts.


Assuntos
Oryza , Genes Reporter , Oryza/genética , Plantas/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Transgenes/genética
5.
Elife ; 92020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32441255

RESUMO

The exchange of small RNAs (sRNAs) between hosts and pathogens can lead to gene silencing in the recipient organism, a mechanism termed cross-kingdom RNAi (ck-RNAi). While fungal sRNAs promoting virulence are established, the significance of ck-RNAi in distinct plant pathogens is not clear. Here, we describe that sRNAs of the pathogen Hyaloperonospora arabidopsidis, which represents the kingdom of oomycetes and is phylogenetically distant from fungi, employ the host plant's Argonaute (AGO)/RNA-induced silencing complex for virulence. To demonstrate H. arabidopsidis sRNA (HpasRNA) functionality in ck-RNAi, we designed a novel CRISPR endoribonuclease Csy4/GUS reporter that enabled in situ visualization of HpasRNA-induced target suppression in Arabidopsis. The significant role of HpasRNAs together with AtAGO1 in virulence was revealed in plant atago1 mutants and by transgenic Arabidopsis expressing a short-tandem-target-mimic to block HpasRNAs, that both exhibited enhanced resistance. HpasRNA-targeted plant genes contributed to host immunity, as Arabidopsis gene knockout mutants displayed quantitatively enhanced susceptibility.


Assuntos
Oomicetos/metabolismo , Oomicetos/patogenicidade , RNA de Plantas/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica , Inativação Gênica , Oomicetos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , Virulência/genética
6.
Plant Cell ; 31(5): 1043-1062, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30894458

RESUMO

The function of the plant hormone jasmonic acid (JA) in the development of tomato (Solanum lycopersicum) flowers was analyzed with a mutant defective in JA perception (jasmonate-insensitive1-1, jai1-1). In contrast with Arabidopsis (Arabidopsis thaliana) JA-insensitive plants, which are male sterile, the tomato jai1-1 mutant is female sterile, with major defects in female development. To identify putative JA-dependent regulatory components, we performed transcriptomics on ovules from flowers at three developmental stages from wild type and jai1-1 mutants. One of the strongly downregulated genes in jai1-1 encodes the MYB transcription factor SlMYB21. Its Arabidopsis ortholog plays a crucial role in JA-regulated stamen development. SlMYB21 was shown here to exhibit transcription factor activity in yeast, to interact with SlJAZ9 in yeast and in planta, and to complement Arabidopsis myb21-5 To analyze SlMYB21 function, we generated clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR associated protein 9 (Cas9) mutants and identified a mutant by Targeting Induced Local Lesions in Genomes (TILLING). These mutants showed female sterility, corroborating a function of MYB21 in tomato ovule development. Transcriptomics analysis of wild type, jai1-1, and myb21-2 carpels revealed processes that might be controlled by SlMYB21. The data suggest positive regulation of JA biosynthesis by SlMYB21, but negative regulation of auxin and gibberellins. The results demonstrate that SlMYB21 mediates at least partially the action of JA and might control the flower-to-fruit transition..


Assuntos
Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Regulação para Baixo , Fertilidade , Flores/genética , Flores/fisiologia , Frutas/genética , Frutas/fisiologia , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/fisiologia , Mutação , Óvulo Vegetal/genética , Óvulo Vegetal/fisiologia , Fenótipo , Infertilidade das Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética
7.
Plant Physiol ; 179(3): 1001-1012, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30643014

RESUMO

Transcription activator-like effectors (TALEs) are bacterial Type-III effector proteins from phytopathogenic Xanthomonas species that act as transcription factors in plants. The modular DNA-binding domain of TALEs can be reprogrammed to target nearly any DNA sequence. Here, we designed and optimized a two-component AND-gate system for synthetic circuits in plants based on TALEs. In this system, named split-TALE (sTALE), the TALE DNA binding domain and the transcription activation domain are separated and each fused to protein interacting domains. Physical interaction of interacting domains leads to TALE-reconstitution and can be monitored by reporter gene induction. This setup was used for optimization of the sTALE scaffolds, which result in an AND-gate system with an improved signal-to-noise ratio. We also provide a toolkit of ready-to-use vectors and single modules compatible with Golden Gate cloning and MoClo syntax. In addition to its implementation in synthetic regulatory circuits, the sTALE system allows the analysis of protein-protein interactions in planta.


Assuntos
Plantas/genética , Biologia Sintética/métodos , Efetores Semelhantes a Ativadores de Transcrição/fisiologia , Xanthomonas/genética , Diterpenos/metabolismo , Engenharia Genética/métodos , Naftóis/metabolismo , Mapeamento de Interação de Proteínas , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo
8.
Methods Mol Biol ; 1629: 185-204, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28623587

RESUMO

Transcription factors with programmable DNA-binding specificity constitute valuable tools for the design of orthogonal gene regulatory networks for synthetic biology. Transcription activator-like effectors (TALEs), as natural transcription regulators, were used to design, build, and test libraries of synthetic TALE-activated promoters (STAPs) that show a broad range of expression levels in plants. In this chapter, we present protocols for the construction of artificial TALEs and corresponding STAPs.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Plantas/genética , Plantas/metabolismo , Regiões Promotoras Genéticas , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Ativação Transcricional , Clonagem Molecular , Biblioteca Gênica , Ordem dos Genes , Engenharia Genética , Vetores Genéticos/genética
9.
PLoS One ; 10(3): e0120214, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25781334

RESUMO

AvrBs3, the archetype of the family of transcription activator-like (TAL) effectors from phytopathogenic Xanthomonas bacteria, is translocated by the type III secretion system into the plant cell. AvrBs3 localizes to the plant cell nucleus and activates the transcription of target genes. Crucial for this is the central AvrBs3 region of 17.5 34-amino acid repeats that functions as a DNA-binding domain mediating recognition in a "one-repeat-to-one base pair" manner. Although AvrBs3 forms homodimers in the plant cell cytosol prior to nuclear import, it binds DNA as a monomer. Here, we show that complex formation of AvrBs3 proteins negatively affects their DNA-binding affinity in vitro. The conserved cysteine residues at position 30 of each repeat facilitate AvrBs3 complexes via disulfide bonds in vitro but are also required for the gene-inducing activity of the AvrBs3 monomer, i.e., activation of plant gene promoters. Our data suggest that the latter is due to a contribution to protein plasticity and that cysteine substitutions to alanine or serine result in a different DNA-binding mode. In addition, our studies revealed that extended parts of both the N-terminal and C-terminal regions of AvrBs3 contribute to DNA binding and, hence, gene-inducing activity in planta.


Assuntos
Proteínas de Bactérias/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , DNA de Plantas/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Fatores de Transcrição/química , Fatores de Transcrição/genética , Xanthomonas/metabolismo
10.
Nucleic Acids Res ; 42(11): 7160-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24792160

RESUMO

AvrBs3, the founding member of the Xanthomonas transcription-activator-like effectors (TALEs), is translocated into the plant cell where it localizes to the nucleus and acts as transcription factor. The DNA-binding domain of AvrBs3 consists of 17.5 nearly-identical 34 amino acid-repeats. Each repeat specifies binding to one base in the target DNA via amino acid residues 12 and 13 termed repeat variable diresidue (RVD). Natural target sequences of TALEs are generally preceded by a thymine (T0), which is coordinated by a tryptophan residue (W232) in a degenerated repeat upstream of the canonical repeats. To investigate the necessity of T0 and the conserved tryptophan for AvrBs3-mediated gene activation we tested TALE mutant derivatives on target sequences preceded by all possible four bases. In addition, we performed domain swaps with TalC from a rice pathogenic Xanthomonas because TalC lacks the tryptophan residue, and the TalC target sequence is preceded by cytosine. We show that T0 works best and that T0 specificity depends on the repeat number and overall RVD-composition. T0 and W232 appear to be particularly important if the RVD of the first repeat is HD ('rep1 effect'). Our findings provide novel insights into the mechanism of T0 recognition by TALE proteins and are important for TALE-based biotechnological applications.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Fatores de Transcrição/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação , Ligação Proteica , Sequências Repetitivas de Aminoácidos , Timina/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triptofano/genética
11.
New Phytol ; 199(3): 773-86, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23692030

RESUMO

Ralstonia solanacearum is a devastating bacterial phytopathogen with a broad host range. Ralstonia solanacearum injected effector proteins (Rips) are key to the successful invasion of host plants. We have characterized Brg11(hrpB-regulated 11), the first identified member of a class of Rips with high sequence similarity to the transcription activator-like (TAL) effectors of Xanthomonas spp., collectively termed RipTALs. Fluorescence microscopy of in planta expressed RipTALs showed nuclear localization. Domain swaps between Brg11 and Xanthomonas TAL effector (TALE) AvrBs3 (avirulence protein triggering Bs3 resistance) showed the functional interchangeability of DNA-binding and transcriptional activation domains. PCR was used to determine the sequence of brg11 homologs from strains infecting phylogenetically diverse host plants. Brg11 localizes to the nucleus and activates promoters containing a matching effector-binding element (EBE). Brg11 and homologs preferentially activate promoters containing EBEs with a 5' terminal guanine, contrasting with the TALE preference for a 5' thymine. Brg11 and other RipTALs probably promote disease through the transcriptional activation of host genes. Brg11 and the majority of homologs identified in this study were shown to activate similar or identical target sequences, in contrast to TALEs, which generally show highly diverse target preferences. This information provides new options for the engineering of plants resistant to R. solanacearum.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Resistência à Doença/genética , Genes de Plantas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ralstonia solanacearum/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência de Bases , Núcleo Celular/metabolismo , Genes Reporter/genética , Especificidade de Hospedeiro/genética , Dados de Sequência Molecular , Doenças das Plantas/imunologia , Polimorfismo Genético , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Frações Subcelulares/metabolismo , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...