Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(31): 17042-17055, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524069

RESUMO

New synthetic hybrid materials and their increasing complexity have placed growing demands on crystal growth for single-crystal X-ray diffraction analysis. Unfortunately, not all chemical systems are conducive to the isolation of single crystals for traditional characterization. Here, small-molecule serial femtosecond crystallography (smSFX) at atomic resolution (0.833 Å) is employed to characterize microcrystalline silver n-alkanethiolates with various alkyl chain lengths at X-ray free electron laser facilities, resolving long-standing controversies regarding the atomic connectivity and odd-even effects of layer stacking. smSFX provides high-quality crystal structures directly from the powder of the true unknowns, a capability that is particularly useful for systems having notoriously small or defective crystals. We present crystal structures of silver n-butanethiolate (C4), silver n-hexanethiolate (C6), and silver n-nonanethiolate (C9). We show that an odd-even effect originates from the orientation of the terminal methyl group and its role in packing efficiency. We also propose a secondary odd-even effect involving multiple mosaic blocks in the crystals containing even-numbered chains, identified by selected-area electron diffraction measurements. We conclude with a discussion of the merits of the synthetic preparation for the preparation of microdiffraction specimens and compare the long-range order in these crystals to that of self-assembled monolayers.

2.
Nature ; 601(7893): 360-365, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35046599

RESUMO

Inorganic-organic hybrid materials represent a large share of newly reported structures, owing to their simple synthetic routes and customizable properties1. This proliferation has led to a characterization bottleneck: many hybrid materials are obligate microcrystals with low symmetry and severe radiation sensitivity, interfering with the standard techniques of single-crystal X-ray diffraction2,3 and electron microdiffraction4-11. Here we demonstrate small-molecule serial femtosecond X-ray crystallography (smSFX) for the determination of material crystal structures from microcrystals. We subjected microcrystalline suspensions to X-ray free-electron laser radiation12,13 and obtained thousands of randomly oriented diffraction patterns. We determined unit cells by aggregating spot-finding results into high-resolution powder diffractograms. After indexing the sparse serial patterns by a graph theory approach14, the resulting datasets can be solved and refined using standard tools for single-crystal diffraction data15-17. We describe the ab initio structure solutions of mithrene (AgSePh)18-20, thiorene (AgSPh) and tethrene (AgTePh), of which the latter two were previously unknown structures. In thiorene, we identify a geometric change in the silver-silver bonding network that is linked to its divergent optoelectronic properties20. We demonstrate that smSFX can be applied as a general technique for structure determination of beam-sensitive microcrystalline materials at near-ambient temperature and pressure.


Assuntos
Elétrons , Prata , Cristalografia por Raios X , Lasers , Difração de Raios X
3.
Mater Horiz ; 8(1): 197-208, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821298

RESUMO

Two-dimensional (2D) excitons arise from electron-hole confinement along one spatial dimension. Such excitations are often described in terms of Frenkel or Wannier limits according to the degree of exciton spatial localization and the surrounding dielectric environment. In hybrid material systems, such as the 2D perovskites, the complex underlying interactions lead to excitons of an intermediate nature, whose description lies somewhere between the two limits, and a better physical description is needed. Here, we explore the photophysics of a tuneable materials platform where covalently bonded metal-chalcogenide layers are spaced by organic ligands that provide confinement barriers for charge carriers in the inorganic layer. We consider self-assembled, layered bulk silver benzeneselenolate, [AgSePh]∞, and use a combination of transient absorption spectroscopy and ab initio GW plus Bethe-Salpeter equation calculations. We demonstrate that in this non-polar dielectric environment, strongly anisotropic excitons dominate the optical transitions of [AgSePh]∞. We find that the transient absorption measurements at room temperature can be understood in terms of low-lying excitons confined to the AgSe planes with in-plane anisotropy, featuring anisotropic absorption and emission. Finally, we present a pathway to control the exciton behaviour by changing the chalcogen in the material lattice. Our studies unveil unexpected excitonic anisotropies in an unexplored class of tuneable, yet air-stable, hybrid quantum wells, offering design principles for the engineering of an ordered, yet complex dielectric environment and its effect on the excitonic phenomena in such emerging materials.

4.
Front Chem ; 9: 593637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354977

RESUMO

Hybrid nanomaterials possess complex architectures that are driven by a self-assembly process between an inorganic element and an organic ligand. The properties of these materials can often be tuned by organic ligand variation, or by swapping the inorganic element. This enables the flexible fabrication of tailored hybrid materials with a rich variety of properties for technological applications. Liquid-liquid interfaces are useful for synthesizing these compounds as precursors can be segregated and allowed to interact only at the interface. Although procedurally straightforward, this is a complex reaction in an environment that is not easy to probe. Here, we explore the interfacial crystallization of mithrene, a supramolecular multi-quantum well. This material sandwiches a well-defined silver-chalcogenide layer between layers of organic ligands. Controlling mithrene crystal size and morphology to be useful for applications requires understanding details of its crystal growth, but the specific mechanism for this reaction remain only lightly investigated. We performed a study of mithrene crystallization at an oil-water interfaces to elucidate how the interfacial free energy affects nucleation and growth. We exchanged the oil solvent on the basis of solvent viscosity and surface tension, modifying the dynamic contact angle and interfacial free energy. We isolated and characterized the reaction byproducts via scanning electron microscopy (SEM). We also developed a high-throughput small angle X-ray scattering (SAXS) technique to measure crystallization at short reaction timescales (minutes). Our results showed that modifying interfacial surface energy affects both the reaction kinetics and product size homogeneity and yield. Our SAXS measurements reveal the onset of crystallinity after only 15 min. These results provide a template for exploring directed synthesis of complex materials via experimental methods.

5.
Langmuir ; 34(47): 14265-14273, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30369242

RESUMO

Metal-organic chalcogenolate assemblies have attracted recent interest as ensemble nanomaterials that contain one- or two-dimensional inorganic nanostructures in a periodic array with supramolecular isolation provided by an associated organic ligand lattice. Biphasic immiscible synthesis at liquid-liquid interfaces is a convenient way to grow crystalline d10 metal-organic chalcogenolate assemblies. However, there has been little systematic study of the role of temperature on the nucleation, growth, and stability of hybrid chalcogenolates during biphasic synthesis. Silver benzeneselenolate, a robustly blue-luminescent, lamellar metal-organic chalcogenolate assembly, was crystallized at biphasic immiscible liquid-liquid interfaces under solvothermal conditions. A positive correlation between temperature and nucleation density was observed, and the luminescence was conserved in all examples of the crystalline phase. Applying solvothermal conditions to the biphasic synthesis generally increased the lateral dimensions of the crystals and strongly favored the crystalline phase of the compound. Although thin, well-formed crystals were observed within 1 h for interfacial reactions performed at high temperatures, degradation was observed in long duration growths resulting in aggregated silver metal. A study of the thermal stability of the material via thermogravimetric analysis revealed that the decomposition is likely a redox reaction reverting the compound to silver metal and diphenyl diselenide. In situ analysis of this degradation was performed by grazing-incidence wide-angle X-ray scattering, which confirmed that the decomposition occurs in a single step with no preceding changes to the structure of the material. This work demonstrates that biphasic solvothermal methods are amenable to the synthesis of hybrid metal-organic chalcogenolate assemblies and that temperature can be used to control product morphology and lateral crystal growth at the immiscible interface.

6.
J Am Chem Soc ; 140(42): 13892-13903, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30265001

RESUMO

Silver metal exposed to the atmosphere corrodes and becomes tarnished as a result of oxidation and precipitation of the metal as an insoluble salt. Tarnish has so poor a reputation that the word itself connotes corruption and disrespectability; however, tarnishing is a facile synthetic approach for preparing thin metal-sulfide films on silver or copper metal that might be exploited to prepare more elaborate materials with desirable optoelectronic properties. In this work, we prepare luminescent semiconducting thin films of mithrene, a metal-organic chalcogenolate assembly, by replacing the tarnish-causing atmospheric sulfur source with diphenyl diselenide. Mithrene, or silver benzeneselenolate [AgSePh]∞, is a crystalline solid that contains both an organic supramolecular phase and a two-dimensional inorganic coordination polymer phase. This compound gradually accumulates as the sole product of silver metal corrosion. The chemical reaction is carried out on metallic silver thin films and yields crystalline films with thicknesses ranging from 5 to 100 nm. We use the large-area films (>6 cm2) afforded by this method to measure the optical properties of this compound. The mild-temperature, wafer-scale processing of hybrid chalcogenolate thin films may prove useful in the application of hybrid organic-inorganic materials in semiconductor devices and hierarchical architectures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...