Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 341(6143): 251-3, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23788734

RESUMO

Impacts of falling fragments observed after the eruption of a filament in a solar flare on 7 June 2011 are similar to those inferred for accretion flows on young stellar objects. As imaged in the ultraviolet (UV)-extreme UV range by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory, many impacts of dark, dense matter display uncommonly intense, compact brightenings. High-resolution hydrodynamic simulations show that such bright spots, with plasma temperatures increasing from ~10(4) to ~10(6) kelvin, occur when high-density plasma (>>10(10) particles per cubic centimeter) hits the solar surface at several hundred kilometers per second, producing high-energy emission as in stellar accretion. The high-energy emission comes from the original fragment material and is heavily absorbed by optically thick plasma, possibly explaining the lower mass accretion rates inferred from x-rays relative to UV-optical-near infrared observations of young stars.

2.
Science ; 340(6137): 1196-9, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23744941

RESUMO

On 15 and 16 December 2011, Sun-grazing comet C/2011 W3 (Lovejoy) passed deep within the solar corona, effectively probing a region that has never been visited by spacecraft. Imaged from multiple perspectives, extreme ultraviolet observations of Lovejoy's tail showed substantial changes in direction, intensity, magnitude, and persistence. To understand this unique signature, we combined a state-of-the-art magnetohydrodynamic model of the solar corona and a model for the motion of emitting cometary tail ions in an embedded plasma. The observed tail motions reveal the inhomogeneous magnetic field of the solar corona. We show how these motions constrain field and plasma properties along the trajectory, and how they can be used to meaningfully distinguish between two classes of magnetic field models.

3.
Nature ; 472(7342): 197-200, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21490669

RESUMO

Coronal cavities are large low-density regions formed by hemispheric-scale magnetic flux ropes suspended in the Sun's outer atmosphere. They evolve over time, eventually erupting as the dark cores of coronal mass ejections. Although coronal mass ejections are common and can significantly affect planetary magnetospheres, the mechanisms by which cavities evolve to an eruptive state remain poorly understood. Recent optical observations of high-latitude 'polar crown' prominences within coronal cavities reveal dark, low-density 'bubbles' that undergo Rayleigh-Taylor instabilities to form dark plumes rising into overlying coronal cavities. These observations offered a possible mechanism for coronal cavity evolution, although the nature of the bubbles, particularly their buoyancy, was hitherto unclear. Here we report simultaneous optical and extreme-ultraviolet observations of polar crown prominences that show that these bubbles contain plasma at temperatures in the range (2.5-12) × 10(5) kelvin, which is 25-120 times hotter than the overlying prominence. This identifies a source of the buoyancy, and suggests that the coronal cavity-prominence system supports a novel form of magneto-thermal convection in the solar atmosphere, challenging current hydromagnetic concepts of prominences and their relation to coronal cavities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...