Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell ; 11: 128-142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799406

RESUMO

Modular Cloning (MoClo) is based on libraries of standardized genetic parts that can be directionally assembled via Golden Gate cloning in one-pot reactions into transcription units and multigene constructs. Here, a team of bachelor students established a MoClo toolkit for the protist Leishmania tarentolae in the frame of the international Genetically Engineered Machine (iGEM) competition. Our modular toolkit is based on a domesticated version of a commercial LEXSY expression vector and comprises 34 genetic parts encoding various affinity tags, targeting signals as well as fluorescent and luminescent proteins. We demonstrated the utility of our kit by the successful production of 16 different tagged versions of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein in L. tarentolae liquid cultures. While highest yields of secreted recombinant RBD were obtained for GST-tagged fusion proteins 48 h post induction, C-terminal peptide tags were often degraded and resulted in lower yields of secreted RBD. Fusing secreted RBD to a synthetic O-glycosylation SP20 module resulted in an apparent molecular mass shift around 10 kDa. No disadvantage regarding the production of RBD was detected when the three antibiotics of the LEXSY system were omitted during the 48-h induction phase. Furthermore, the successful purification of secreted RBD from the supernatant of L. tarentolae liquid cultures was demonstrated in pilot experiments. In summary, we established a MoClo toolkit and exemplified its application for the production of recombinant proteins in L. tarentolae.

2.
Plant Cell ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567528

RESUMO

Cyanobacteria and chloroplasts of algae and plants harbor specialized thylakoid membranes that convert sunlight into chemical energy. These membranes house photosystems II and I, the vital protein-pigment complexes that drive oxygenic photosynthesis. In the course of their evolution, thylakoid membranes have diversified in structure. However, the core machinery for photosynthetic electron transport remained largely unchanged, with adaptations occurring primarily in the light-harvesting antenna systems. Whereas thylakoid membranes in cyanobacteria are relatively simple they become more complex in algae and plants. The chloroplasts of vascular plants contain intricate networks of stacked grana and unstacked stroma thylakoids. This review provides an in-depth view of thylakoid membrane architectures in phototrophs, and the determinants that shape their forms, as well as presenting recent insights into the spatial organization of their biogenesis and maintenance. Its overall goal is to define the underlying principles that have guided the evolution of these bioenergetic membranes.

3.
J Fungi (Basel) ; 10(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38535224

RESUMO

While Botrytis cinerea causes gray mold on many plants, its close relative, Botrytis fabae, is host-specifically infecting predominantly faba bean plants. To explore the basis for its narrow host range, a gapless genome sequence of B. fabae strain G12 (BfabG12) was generated. The BfabG12 genome encompasses 45.0 Mb, with 16 chromosomal telomere-to-telomere contigs that show high synteny and sequence similarity to the corresponding B. cinerea B05.10 (BcB0510) chromosomes. Compared to BcB0510, it is 6% larger, due to many AT-rich regions containing remnants of transposable elements, but encodes fewer genes (11,420 vs. 11,707), due to losses of chromosomal segments with up to 20 genes. The coding capacity of BfabG12 is further reduced by nearly 400 genes that had been inactivated by mutations leading to truncations compared to their BcB0510 orthologues. Several species-specific gene clusters for secondary metabolite biosynthesis with stage-specific expression were identified. Comparison of the proteins secreted during infection revealed high similarities, including 17 phytotoxic proteins that were detected in both species. Our data indicate that evolution of the host-specific B. fabae occurred from an ancestral pathogen with wide host range similar to B. cinerea and was accompanied by losses and degeneration of genes, thereby reducing its pathogenic flexibility.

4.
Plant Cell ; 36(5): 1937-1962, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38242838

RESUMO

Plants need to acclimate to different stresses to optimize growth under unfavorable conditions. In Arabidopsis (Arabidopsis thaliana), the abundance of the chloroplast envelope protein FATTY ACID EXPORT PROTEIN1 (FAX1) decreases after the onset of low temperatures. However, how FAX1 degradation occurs and whether altered FAX1 abundance contributes to cold tolerance in plants remains unclear. The rapid cold-induced increase in RHOMBOID-LIKE PROTEASE11 (RBL11) transcript levels, the physical interaction of RBL11 with FAX1, the specific FAX1 degradation after RBL11 expression, and the absence of cold-induced FAX1 degradation in rbl11 loss-of-function mutants suggest that this enzyme is responsible for FAX1 degradation. Proteomic analyses showed that rbl11 mutants have higher levels of FAX1 and other proteins involved in membrane lipid homeostasis, suggesting that RBL11 is a key element in the remodeling of membrane properties during cold conditions. Consequently, in the cold, rbl11 mutants show a shift in lipid biosynthesis toward the eukaryotic pathway, which coincides with impaired cold tolerance. To test whether cold sensitivity is due to increased FAX1 levels, we analyzed FAX1 overexpressors. The rbl11 mutants and FAX1 overexpressor lines show superimposable phenotypic defects upon exposure to cold temperatures. Our re-sults show that the cold-induced degradation of FAX1 by RBL11 is critical for Arabidop-sis to survive cold and freezing periods.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Transporte de Ácido Graxo/genética , Mutação , Proteólise
5.
Plant Physiol ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214043

RESUMO

Thiol-based redox regulation is a crucial posttranslational mechanism to acclimate plants to changing light availability. Here, we conducted a biotin switch-based redox proteomics study in Arabidopsis (Arabidopsis thaliana) to systematically investigate dynamics of thiol-redox networks in response to temporal changes in light availability and across genotypes lacking parts of the thioredoxin (Trx) or NADPH-Trx-reductase C (NTRC) systems in the chloroplast. Time-resolved dynamics revealed light led to marked decreases in the oxidation states of many chloroplast proteins with photosynthetic functions during the first 10 min, followed by their partial reoxidation after 2 to 6 h into the photoperiod. This involved f, m, and x-type Trx proteins showing similar light-induced reduction-oxidation dynamics, while NTRC, 2-Cys peroxiredoxins, and Trx y2 showed an opposing pattern, being more oxidized in light than dark. In Arabidopsis trxf1f2, trxm1m2, or ntrc mutants, most proteins showed increased oxidation states in the light compared to wild type, suggesting their light-dependent dynamics were related to NTRC/Trx networks. While NTRC deficiency had a strong influence in all light conditions, deficiencies in f- or m-type Trxs showed differential impacts on the thiol-redox proteome depending on the light environment, being higher in constant or fluctuating light, respectively. The results indicate plant redox proteomes are subject to dynamic changes in reductive and oxidative pathways to cooperatively fine-tune photosynthetic and metabolic processes in the light. The importance of the individual elements of the NTRC/Trx networks mediating these responses depend on the extent of light variability, with NTRC playing a crucial role to balance protein-redox states in rapidly fluctuating light.

6.
Plant Cell Environ ; 46(11): 3371-3391, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37606545

RESUMO

The functionality of all metabolic processes in chloroplasts depends on a balanced integration of nuclear- and chloroplast-encoded polypeptides into the plastid's proteome. The chloroplast chaperonin machinery is an essential player in chloroplast protein folding under ambient and stressful conditions, with a more intricate structure and subunit composition compared to the orthologous GroEL/ES chaperonin of Escherichia coli. However, its exact role in chloroplasts remains obscure, mainly because of very limited knowledge about the interactors. We employed the competition immunoprecipitation method for the identification of the chaperonin's interactors in Chlamydomonas reinhardtii. Co-immunoprecipitation of the target complex in the presence of increasing amounts of isotope-labelled competitor epitope and subsequent mass spectrometry analysis specifically allowed to distinguish true interactors from unspecifically co-precipitated proteins. Besides known substrates such as RbcL and the expected complex partners, we revealed numerous new interactors with high confidence. Proteins that qualify as putative substrate proteins differ from bulk chloroplast proteins by a higher content of beta-sheets, lower alpha-helical conformation and increased aggregation propensity. Immunoprecipitations targeted against a subunit of the co-chaperonin lid revealed the ClpP protease as a specific partner complex, pointing to a close collaboration of these machineries to maintain protein homeostasis in the chloroplast.


Assuntos
Chaperonina 60 , Cloroplastos , Cloroplastos/metabolismo , Chaperonina 60/análise , Chaperonina 60/química , Chaperonina 60/metabolismo , Dobramento de Proteína , Proteínas de Cloroplastos/metabolismo
7.
Plant Physiol ; 193(3): 1772-1796, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37310689

RESUMO

In Chlamydomonas (Chlamydomonas reinhardtii), the VESICLE-INDUCING PROTEIN IN PLASTIDS 1 and 2 (VIPP1 and VIPP2) play roles in the sensing and coping with membrane stress and in thylakoid membrane biogenesis. To gain more insight into these processes, we aimed to identify proteins interacting with VIPP1/2 in the chloroplast and chose proximity labeling (PL) for this purpose. We used the transient interaction between the nucleotide exchange factor CHLOROPLAST GRPE HOMOLOG 1 (CGE1) and the stromal HEAT SHOCK PROTEIN 70B (HSP70B) as test system. While PL with APEX2 and BioID proved to be inefficient, TurboID resulted in substantial biotinylation in vivo. TurboID-mediated PL with VIPP1/2 as baits under ambient and H2O2 stress conditions confirmed known interactions of VIPP1 with VIPP2, HSP70B, and the CHLOROPLAST DNAJ HOMOLOG 2 (CDJ2). Proteins identified in the VIPP1/2 proxiomes can be grouped into proteins involved in the biogenesis of thylakoid membrane complexes and the regulation of photosynthetic electron transport, including PROTON GRADIENT REGULATION 5-LIKE 1 (PGRL1). A third group comprises 11 proteins of unknown function whose genes are upregulated under chloroplast stress conditions. We named them VIPP PROXIMITY LABELING (VPL). In reciprocal experiments, we confirmed VIPP1 in the proxiomes of VPL2 and PGRL1. Our results demonstrate the robustness of TurboID-mediated PL for studying protein interaction networks in the chloroplast of Chlamydomonas and pave the way for analyzing functions of VIPPs in thylakoid biogenesis and stress responses.


Assuntos
Chlamydomonas , Tilacoides , Tilacoides/metabolismo , Chlamydomonas/genética , Chlamydomonas/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas de Membrana/metabolismo , Cloroplastos/metabolismo
8.
Genes (Basel) ; 14(4)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37107706

RESUMO

Microalgae biotechnology has the potential to produce high quality bioproducts in a sustainable manner. Here, Chlamydomonas reinhardtii has shown great potential as a host for biotechnological exploitation. However, low expression of nuclear transgenes is still a problem and needs to be optimized. In many model organisms, viral promoters are used to drive transgene expression at high levels. However, no viruses are known to infect Chlamydomonas, and known viral promoters are not functional. Recently, two different lineages of giant viruses were identified in the genomes of Chlamydomonas reinhardtii field isolates. In this work, we tested six potentially strong promoters from these viral genomes for their ability to drive transgene expression in Chlamydomonas. We used ble, NanoLUC, and mCherry as reporter genes, and three native benchmark promoters as controls. None of the viral promoters drove expression of any reporter gene beyond background. During our study, we found that mCherry variants are produced by alternative in-frame translational start sites in Chlamydomonas. We show that this problem can be overcome by mutating the responsible methionine codons to codons for leucine and by using the 5'-UTR of ßTUB2 instead of the 5'-UTRs of PSAD or RBCS2. Apparently, the ßTUB2 5'-UTR promotes the use of the first start codon. This could be mediated by the formation of a stem-loop between sequences of the ßTUB2 5'-UTR and sequences downstream of the first AUG in the mCherry reporter, potentially increasing the dwell time of the scanning 40S subunit on the first AUG and thus decreasing the probability of leaky scanning.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas/genética , Regiões 5' não Traduzidas/genética , Regiões Promotoras Genéticas , Transgenes , Códon , Chlamydomonas reinhardtii/genética
9.
J Exp Bot ; 74(12): 3714-3728, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36951384

RESUMO

In the cytosol of plant cells, heat-induced protein aggregates are resolved by the CASEIN LYTIC PROTEINASE/HEAT SHOCK PROTEIN 100 (CLP/HSP100) chaperone family member HSP101, which is essential for thermotolerance. For the chloroplast family member CLPB3 this is less clear, with controversial reports on its role in conferring thermotolerance. To shed light on this issue, we have characterized two clpb3 mutants in Chlamydomonas reinhardtii. We show that chloroplast CLPB3 is required for resolving heat-induced protein aggregates containing stromal TRIGGER FACTOR (TIG1) and the small heat shock proteins 22E/F (HSP22E/F) in vivo, and for conferring thermotolerance under heat stress. Although CLPB3 accumulation is similar to that of stromal HSP70B under ambient conditions, we observed no prominent constitutive phenotypes. However, we found decreased accumulation of the PLASTID RIBOSOMAL PROTEIN L1 (PRPL1) and increased accumulation of the stromal protease DEG1C in the clpb3 mutants, suggesting that a reduction in chloroplast protein synthesis capacity and an increase in proteolytic capacity may compensate for loss of CLPB3 function. Under ambient conditions, CLPB3 was distributed throughout the chloroplast, but reorganized into stromal foci upon heat stress, which mostly disappeared during recovery. CLPB3 foci were localized next to HSP22E/F, which accumulated largely near the thylakoid membranes. This suggests a possible role for CLPB3 in disentangling protein aggregates from the thylakoid membrane system.


Assuntos
Chlamydomonas , Termotolerância , Agregados Proteicos , Chlamydomonas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Cloroplastos/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo
10.
Plant Physiol ; 191(3): 1612-1633, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36649171

RESUMO

In land plants and cyanobacteria, co-translational association of chlorophyll (Chl) to the nascent D1 polypeptide, a reaction center protein of photosystem II (PSII), requires a Chl binding complex consisting of a short-chain dehydrogenase (high chlorophyll fluorescence 244 [HCF244]/uncharacterized protein 39 [Ycf39]) and one-helix proteins (OHP1 and OHP2 in chloroplasts) of the light-harvesting antenna complex superfamily. Here, we show that an ohp2 mutant of the green alga Chlamydomonas (Chlamydomonas reinhardtii) fails to accumulate core PSII subunits, in particular D1 (encoded by the psbA mRNA). Extragenic suppressors arose at high frequency, suggesting the existence of another route for Chl association to PSII. The ohp2 mutant was complemented by the Arabidopsis (Arabidopsis thaliana) ortholog. In contrast to land plants, where psbA translation is prevented in the absence of OHP2, ribosome profiling experiments showed that the Chlamydomonas mutant translates the psbA transcript over its full length. Pulse labeling suggested that D1 is degraded during or immediately after translation. The translation of other PSII subunits was affected by assembly-controlled translational regulation. Proteomics showed that HCF244, a translation factor which associates with and is stabilized by OHP2 in land plants, still partly accumulates in the Chlamydomonas ohp2 mutant, explaining the persistence of psbA translation. Several Chl biosynthesis enzymes overaccumulate in the mutant membranes. Partial inactivation of a D1-degrading protease restored a low level of PSII activity in an ohp2 background, but not photoautotrophy. Taken together, our data suggest that OHP2 is not required for psbA translation in Chlamydomonas, but is necessary for D1 stabilization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Chlamydomonas reinhardtii , Chlamydomonas , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Chlamydomonas/genética , Chlamydomonas/metabolismo , Proteínas/metabolismo , Cloroplastos/metabolismo , Arabidopsis/genética , Plantas/metabolismo , Clorofila/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Arabidopsis/metabolismo
11.
Plant Commun ; 4(1): 100511, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36575799

RESUMO

Plastids communicate their developmental and physiological status to the nucleus via retrograde signaling, allowing nuclear gene expression to be adjusted appropriately. Signaling during plastid biogenesis and responses of mature chloroplasts to environmental changes are designated "biogenic" and "operational" controls, respectively. A prominent example of the investigation of biogenic signaling is the screen for gun (genomes uncoupled) mutants. Although the first five gun mutants were identified 30 years ago, the functions of GUN proteins in retrograde signaling remain controversial, and that of GUN1 is hotly disputed. Here, we provide background information and critically discuss recently proposed concepts that address GUN-related signaling and some novel gun mutants. Moreover, considering heme as a candidate in retrograde signaling, we revisit the spatial organization of heme biosynthesis and export from plastids. Although this review focuses on GUN pathways, we also highlight recent progress in the identification and elucidation of chloroplast-derived signals that regulate the acclimation response in green algae and plants. Here, stress-induced accumulation of unfolded/misassembled chloroplast proteins evokes a chloroplast-specific unfolded protein response, which leads to changes in the expression levels of nucleus-encoded chaperones and proteases to restore plastid protein homeostasis. We also address the importance of chloroplast-derived signals for activation of flavonoid biosynthesis leading to production of anthocyanins during stress acclimation through sucrose non-fermenting 1-related protein kinase 1. Finally, a framework for identification and quantification of intercompartmental signaling cascades at the proteomic and metabolomic levels is provided, and we discuss future directions of dissection of organelle-nucleus communication.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Antocianinas , Proteômica , Heme/metabolismo , Proteínas de Ligação a DNA/genética
12.
Microorganisms ; 10(11)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36422315

RESUMO

The marine picocyanobacterium Prochlorococcus contributes significantly to global primary production, and its abundance and diversity is shaped in part by viral infection. Here, we identified a cyanophage-encoded MarR-type transcription factor that induces the gene expression of host Prochlorococcus MED4 endoribonuclease (RNase) E during phage infection. The increase in rne transcript levels relies on the phage (p)MarR-mediated activation of an alternative promoter that gives rise to a truncated yet enzymatically fully functional RNase E isoform. In this study, we demonstrate that pMarR binds to an atypical activator site downstream of the transcriptional start site and that binding is enhanced in the presence of Ca2+ ions. Furthermore, we show that dimeric pMarR interacts with the α subunit of RNA polymerase, and we identified amino acid residues S66, R67, and G106, which are important for Ca2+ binding, DNA binding, and dimerization of pMarR, respectively.

13.
Front Plant Sci ; 13: 988870, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204065

RESUMO

The spike protein is the major protein on the surface of coronaviruses. It is therefore the prominent target of neutralizing antibodies and consequently the antigen of all currently admitted vaccines against SARS-CoV-2. Since it is a 1,273-amino acids glycoprotein with 22 N-linked glycans, the production of functional, full-length spike protein was limited to higher eukaryotes. Here we report the production of full-length SARS-CoV-2 spike protein - lacking the C-terminal membrane anchor - as a secreted protein in the prefusion-stabilized conformation in the unicellular green alga Chlamydomonas reinhardtii. We show that the spike protein is efficiently cleaved at the furin cleavage site during synthesis in the alga and that cleavage is abolished upon mutation of the multi-basic cleavage site. We could enrich the spike protein from culture medium by ammonium sulfate precipitation and demonstrate its functionality based on its interaction with recombinant ACE2 and ACE2 expressed on human 293T cells. Chlamydomonas reinhardtii is a GRAS organism that can be cultivated at low cost in simple media at a large scale, making it an attractive production platform for recombinant spike protein and other biopharmaceuticals in low-income countries.

14.
Front Mol Biosci ; 9: 939834, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120551

RESUMO

In algae and land plants, transport of fatty acids (FAs) from their site of synthesis in the plastid stroma to the endoplasmic reticulum (ER) for assembly into acyl lipids is crucial for cellular lipid homeostasis, including the biosynthesis of triacylglycerol (TAG) for energy storage. In the unicellular green alga Chlamydomonas reinhardtii, understanding and engineering of these processes is of particular interest for microalga-based biofuel and biomaterial production. Whereas in the model plant Arabidopsis thaliana, FAX (fatty acid export) proteins have been associated with a function in plastid FA-export and hence TAG synthesis in the ER, the knowledge on the function and subcellular localization of this protein family in Chlamydomonas is still scarce. Among the four FAX proteins encoded in the Chlamydomonas genome, we found Cr-FAX1 and Cr-FAX5 to be involved in TAG production by functioning in chloroplast and ER membranes, respectively. By in situ immunolocalization, we show that Cr-FAX1 inserts into the chloroplast envelope, while Cr-FAX5 is located in ER membranes. Severe reduction of Cr-FAX1 or Cr-FAX5 proteins by an artificial microRNA approach results in a strong decrease of the TAG content in the mutant strains. Further, overexpression of chloroplast Cr-FAX1, but not of ER-intrinsic Cr-FAX5, doubled the content of TAG in Chlamydomonas cells. We therefore propose that Cr-FAX1 in chloroplast envelopes and Cr-FAX5 in ER membranes represent a basic set of FAX proteins to ensure shuttling of FAs from chloroplasts to the ER and are crucial for oil production in Chlamydomonas.

15.
Front Plant Sci ; 13: 911483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845675

RESUMO

Chlamydomonas reinhardtii is emerging as a production platform for biotechnological purposes thanks to recent achievements, which we briefly summarize in this review. Firstly, robust nuclear transgene expression is now possible because several impressive improvements have been made in recent years. Strains allowing efficient and stable nuclear transgene expression are available and were recently made more amenable to rational biotechnological approaches by enabling genetic crosses and identifying their causative mutation. The MoClo synthetic biology strategy, based on Golden Gate cloning, was developed for Chlamydomonas and includes a growing toolkit of more than 100 genetic parts that can be robustly and rapidly assembled in a predefined order. This allows for rapid iterative cycles of transgene design, building, testing, and learning. Another major advancement came from various findings improving transgene design and expression such as the systematic addition of introns into codon-optimized coding sequences. Lastly, the CRISPR/Cas9 technology for genome editing has undergone several improvements since its first successful report in 2016, which opens the possibility of optimizing biosynthetic pathways by switching off competing ones. We provide a few examples demonstrating that all these recent developments firmly establish Chlamydomonas as a chassis for synthetic biology and allow the rewiring of its metabolism to new capabilities.

16.
Commun Biol ; 5(1): 460, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562408

RESUMO

Different intensities of high temperatures affect the growth of photosynthetic cells in nature. To elucidate the underlying mechanisms, we cultivated the unicellular green alga Chlamydomonas reinhardtii under highly controlled photobioreactor conditions and revealed systems-wide shared and unique responses to 24-hour moderate (35°C) and acute (40°C) high temperatures and subsequent recovery at 25°C. We identified previously overlooked unique elements in response to moderate high temperature. Heat at 35°C transiently arrested the cell cycle followed by partial synchronization, up-regulated transcripts/proteins involved in gluconeogenesis/glyoxylate-cycle for carbon uptake and promoted growth. But 40°C disrupted cell division and growth. Both high temperatures induced photoprotection, while 40°C distorted thylakoid/pyrenoid ultrastructure, affected the carbon concentrating mechanism, and decreased photosynthetic efficiency. We demonstrated increased transcript/protein correlation during both heat treatments and hypothesize reduced post-transcriptional regulation during heat may help efficiently coordinate thermotolerance mechanisms. During recovery after both heat treatments, especially 40°C, transcripts/proteins related to DNA synthesis increased while those involved in photosynthetic light reactions decreased. We propose down-regulating photosynthetic light reactions during DNA replication benefits cell cycle resumption by reducing ROS production. Our results provide potential targets to increase thermotolerance in algae and crops.


Assuntos
Chlamydomonas reinhardtii , Carbono/metabolismo , Chlamydomonas reinhardtii/genética , Temperatura Alta , Plantas/metabolismo , Temperatura , Tilacoides/metabolismo
17.
Curr Genet ; 68(3-4): 531-536, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35429260

RESUMO

Synthetic Biology is revolutionizing biological research by introducing principles of mechanical engineering, including the standardization of genetic parts and standardized part assembly routes. Both are realized in the Modular Cloning (MoClo) strategy. MoClo allows for the rapid and robust assembly of individual genes and multigene clusters, enabling iterative cycles of gene design, construction, testing, and learning in short time. This is particularly true if generation times of target organisms are short, as is the case for the unicellular green alga Chlamydomonas reinhardtii. Testing a gene of interest in Chlamydomonas with MoClo requires two assembly steps, one for the gene of interest itself and another to combine it with a selection marker. To reduce this to a single assembly step, we constructed five new destination vectors. They contain genes conferring resistance to commonly used antibiotics in Chlamydomonas and a site for the direct assembly of basic genetic parts. The vectors employ red/white color selection and, therefore, do not require costly compounds like X-gal and IPTG. mCherry expression is used to demonstrate the functionality of these vectors.


Assuntos
Chlamydomonas , Engenharia Genética , Chlamydomonas/genética , Clonagem Molecular , Vetores Genéticos/genética , Biologia Sintética
18.
PLoS Pathog ; 18(3): e1010367, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35239739

RESUMO

Botrytis cinerea is a major plant pathogen infecting more than 1400 plant species. During invasion, the fungus rapidly kills host cells, which is believed to be supported by induction of programmed plant cell death. To comprehensively evaluate the contributions of most of the currently known plant cell death inducing proteins (CDIPs) and metabolites for necrotrophic infection, an optimized CRISPR/Cas9 protocol was established which allowed to perform serial marker-free mutagenesis to generate multiple deletion mutants lacking up to 12 CDIPs. Whole genome sequencing of a 6x and 12x deletion mutant revealed a low number of off-target mutations which were unrelated to Cas9-mediated cleavage. Secretome analyses confirmed the loss of secreted proteins encoded by the deleted genes. Infection tests with the mutants revealed a successive decrease in virulence with increasing numbers of mutated genes, and varying effects of the knockouts on different host plants. Comparative analysis of mutants confirmed significant roles of two polygalacturonases (PG1, PG2) and the phytotoxic metabolites botrydial and botcinins for infection, but revealed no or only weak effects of deletion of the other CDIPs. Nicotiana benthamiana plants with mutated or silenced coreceptors of pattern recognition receptors, SOBIR1 and BAK1, showed similar susceptibility as control plants to infection by B. cinerea wild type and a 12x deletion mutant. These results raise doubts about a major role of manipulation of these plant defence regulators for B. cinerea infection. Despite the loss of most of the known phytotoxic compounds, the on planta secretomes of the multiple mutants retained substantial phytotoxic activity, proving that further, as yet unknown CDIPs contribute to necrosis and virulence. Our study has addressed for the first time systematically the functional redundancy of fungal virulence factors, and demonstrates that B. cinerea releases a highly redundant cocktail of proteins to achieve necrotrophic infection of a wide variety of host plants.


Assuntos
Botrytis , Nicotiana , Botrytis/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas , Nicotiana/genética , Nicotiana/microbiologia , Virulência/genética
19.
J Exp Bot ; 73(1): 245-262, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34436580

RESUMO

While the composition and function of the major thylakoid membrane complexes are well understood, comparatively little is known about their biogenesis. The goal of this work was to shed more light on the role of auxiliary factors in the biogenesis of photosystem II (PSII). Here we have identified the homolog of LOW PSII ACCUMULATION 2 (LPA2) in Chlamydomonas. A Chlamydomonas reinhardtii lpa2 mutant grew slower in low light, was hypersensitive to high light, and exhibited aberrant structures in thylakoid membrane stacks. Chlorophyll fluorescence (Fv/Fm) was reduced by 38%. Synthesis and stability of newly made PSII core subunits D1, D2, CP43, and CP47 were not impaired. However, complexome profiling revealed that in the mutant CP43 was reduced to ~23% and D1, D2, and CP47 to ~30% of wild type levels. Levels of PSI and the cytochrome b6f complex were unchanged, while levels of the ATP synthase were increased by ~29%. PSII supercomplexes, dimers, and monomers were reduced to ~7%, ~26%, and ~60% of wild type levels, while RC47 was increased ~6-fold and LHCII by ~27%. We propose that LPA2 catalyses a step during PSII assembly without which PSII monomers and further assemblies become unstable and prone to degradation. The LHCI antenna was more disconnected from PSI in the lpa2 mutant, presumably as an adaptive response to reduce excitation of PSI. From the co-migration profiles of 1734 membrane-associated proteins, we identified three novel putative PSII associated proteins with potential roles in regulating PSII complex dynamics, assembly, and chlorophyll breakdown.


Assuntos
Chlamydomonas , Complexo de Proteína do Fotossistema II , Chlamydomonas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo
20.
EMBO Rep ; 23(3): e53135, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34942054

RESUMO

Alternative splicing is a potent modifier of protein function. Stromal interaction molecule 1 (Stim1) is the essential activator of store-operated Ca2+ entry (SOCE) triggering activation of transcription factors. Here, we characterize Stim1A, a splice variant with an additional 31 amino acid domain inserted in frame within its cytosolic domain. Prominent expression of exon A is found in astrocytes, heart, kidney, and testes. Full-length Stim1A functions as a dominant-negative regulator of SOCE and ICRAC, facilitating sequence-specific fast calcium-dependent inactivation and destabilizing gating of Orai channels. Downregulation or absence of native Stim1A results in increased SOCE. Despite reducing SOCE, Stim1A leads to increased NFAT translocation. Differential proteomics revealed an interference of Stim1A with the cAMP-SOCE crosstalk by altered modulation of phosphodiesterase 8 (PDE8), resulting in reduced cAMP degradation and increased PIP5K activity, facilitating NFAT activation. Our study uncovers a hitherto unknown mechanism regulating NFAT activation and indicates that cell-type-specific splicing of Stim1 is a potent means to regulate the NFAT signalosome and cAMP-SOCE crosstalk.


Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteína ORAI1/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...