Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1384172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665943

RESUMO

Introduction: Blastic plasmacytoid dendritic cell neoplasia (BPDCN) is a rare, aggressive hematologic malignancy. Until recently, the only curative treatment consisted of intensive chemotherapy, followed by hematopoietic cell transplantation (HCT) in eligible adult cases. Tagraxofusp, a CD123-targeted protein-drug conjugate and the first approved targeted treatment for BPDCN, might enhance outcomes especially in patients not eligible for intensive therapies. Methods: Here, we report real-world outcomes of five male patients with a median age of 79 years who received tagraxofusp as first-line treatment for BPDCN. Results: Tagraxofusp was found to be well-tolerated in this elderly cohort, with only one patient requiring discontinuation. Three patients responded to the treatment (two patients achieved a CR and one patient achieved a partial response), of which two subsequently underwent allogeneic (allo) HCT. One patient is alive and well after ≥ 4 years after alloHCT, and one patient shows sustained CR after now 13 cycles of tagraxofusp. The other three patients died of progressive disease 4-11 months after initiation of treatment. Discussion: In line with results from 13 published cases outside clinical trials in the literature, sustained responses were associated with CR after tagraxofusp treatment and subsequent alloHCT. Our results provide real-world evidence for safety and efficacy of tagraxofusp as first-line treatment for BPDCN.

2.
Cancers (Basel) ; 12(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751214

RESUMO

(1) Background: Head and neck squamous cell carcinoma (HNSCC) is characterized by a distinctive suppression of the anti-tumor immunity, both locally in the tumor microenvironment (TME) and the periphery. Tumor-derived exosomes mediate this immune suppression by directly suppressing T effector function and by inducing differentiation of regulatory T cells. However, little is known about the effects of exosomes on B cells. (2) Methods: Peripheral B cells from healthy donors and HNSCC patients were isolated and checkpoint receptor expression was analyzed by flow cytometry. Circulating exosomes were isolated from the plasma of HNSCC patients (n = 21) and healthy individuals (n = 10) by mini size-exclusion chromatography. B cells from healthy individuals were co-cultured with isolated exosomes for up to 4 days. Proliferation, viability, surface expression of checkpoint receptors, and intracellular signaling were analyzed in B cells by flow cytometry. (3) Results: Expression of the checkpoint receptors PD-1 and LAG3 was increased on B cells from HNSCC patients. The protein concentration of circulating exosomes was increased in HNSCC patients as compared to healthy donors. Both exosomes from healthy individuals and HNSCC patients inhibited B cell proliferation and survival, in vitro. Surface expression of inhibitory and stimulatory checkpoint receptors on B cells was modulated in co-culture with exosomes. In addition, an inhibitory effect of exosomes on B cell receptor (BCR) signaling was demonstrated in B cells. (4) Conclusions: Plasma-derived exosomes show inhibitory effects on the function of healthy B cells. Interestingly, these inhibitory effects are similar between exosomes from healthy individuals and HNSCC patients, suggesting a physiological B cell inhibitory role of circulating exosomes.

3.
Cancers (Basel) ; 12(7)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708274

RESUMO

Plasma-derived exosomes of head and neck squamous cell carcinoma (HNSCC) patients carry inhibitory factors mediating immune suppression. Separation of tumor-derived exosomes (TEX) and non-TEX may assist in a better understanding of their respective parental cells. Here, we evaluate the impact of TEX or hematopoietic-derived exosomes on immune suppression. We evaluated apoptosis in CD8+ T cells, conversion of CD4+ T cells to regulatory T cells (Treg), and adenosine production by TEX, non-TEX, or total exosomes. Exosome protein cargo was significantly higher in total and CD45(-) exosomes from high stage compared to low stage patients. Furthermore, total and CD45(-) exosomes of high stage patients induced more apoptosis in CD8+ T cells than their low stage counterparts. CD69 suppression, a marker of reduced CD8+ T cell activation, was only mediated by CD45(-) exosomes. All fractions induced Treg differentiation, defined by CD39 expression, but only CD45(-) exosomes showed a stage-dependent conversion. CD45(-) exosomes produced higher adenosine concentrations than CD45(+) exosomes, concluding that adenosine production measured in total exosomes mainly derives from TEX. The presented results show significant induction of immune suppression by TEX in HNSCC. This immunosuppressive effect supports the potential role of exosomes as liquid biomarkers for disease stage and level of immune suppression.

4.
Front Mol Neurosci ; 11: 212, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29970989

RESUMO

Autism spectrum disorder (ASD) refers to a large set of neurodevelopmental disorders, which have in common both repetitive behavior and abnormalities in social interactions and communication. Interestingly, most forms of ASD have a strong genetic contribution. However, the molecular underpinnings of this disorder remain elusive. The SHANK3 gene (and to a lesser degree SHANK2) which encode for the postsynaptic density (PSD) proteins SHANK3/SHANK2 and the CONTACTIN 4 gene which encodes for the neuronal glycoprotein CONTACTIN4 (CNTN4) exhibit mutated variants which are associated with ASD. Like many of the other genes associated with ASD, both SHANKs and CNTN4 affect synapse formation and function and are therefore related to the proper development and signaling capability of excitatory and inhibitory neuronal networks in the adult mammal brain. In this study, we used mutant/knock-out mice of Shank2 (Shank2-/-), Shank3 (Shank3αß-/-), and Cntn4 (Cntn4-/-) as ASD-models to explore whether these mice share a molecular signature in glutamatergic and GABAergic synaptic transmission in ASD-related brain regions. Using a biotinylation assay and subsequent western blotting we focused our analysis on cell surface expression of several ionotropic glutamate and GABA receptor subunits: GluA1, GluA2, and GluN1 were analyzed for excitatory synaptic transmission, and the α1 subunit of the GABAA receptor was analyzed for inhibitory synaptic transmission. We found that both Shank2-/- and Shank3αß-/- mice exhibit reduced levels of several cell surface glutamate receptors in the analyzed brain regions-especially in the striatum and thalamus-when compared to wildtype controls. Interestingly, even though Cntn4-/- mice also show reduced levels of some cell surface glutamate receptors in the cortex and hippocampus, increased levels of cell surface glutamate receptors were found in the striatum. Moreover, Cntn4-/- mice do not only show brain region-specific alterations in cell surface glutamate receptors but also a downregulation of cell surface GABA receptors in several of the analyzed brain regions. The results of this study suggest that even though mutations in defined genes can be associated with ASD this does not necessarily result in a common molecular phenotype in surface expression of glutamatergic and GABAergic receptor subunits in defined brain regions.

5.
Adv Anat Embryol Cell Biol ; 224: 189-211, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28551757

RESUMO

As autism spectrum disorder (ASD) is largely regarded as a neurodevelopmental condition, long-time consensus was that its hallmark features are irreversible. However, several studies from recent years using defined mouse models of ASD have provided clear evidence that in mice neurobiological and behavioural alterations can be ameliorated or even reversed by genetic restoration or pharmacological treatment either before or after symptom onset. Here, we review findings on genetic and pharmacological reversibility of phenotypes in mouse models of ASD. Our review should give a comprehensive overview on both aspects and encourage future studies to better understand the underlying molecular mechanisms that might be translatable from animals to humans.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Animais , Transtorno do Espectro Autista/patologia , Comportamento Animal , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Camundongos , Fenótipo
6.
Curr Top Behav Neurosci ; 30: 311-324, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26602248

RESUMO

Autism spectrum disorder (ASD) affects approximately 1 % of the human population and has a strong genetic component. Hence, the recent discovery of major "ASD genes" has subsequently resulted in the generation of several genetic animal models of ASD. Careful analysis of behavioral phenotypes and characterization of the underlying neurobiological mechanisms in these models should further help us to identify novel therapeutic targets and develop more effective strategies in the future to ameliorate or even reverse core symptoms and comorbidities of ASD. In this review, we will focus on the mutant mouse as animal model and outline how to characterize both behavioral and neurobiological phenotypes in this organism. We will further discuss a selection of major ASD mutant mouse lines. Our conclusions will finally address the current goals and perspectives in the field to obtain a more comprehensive and possibly also converging picture of ASD pathogenesis, which could be most useful for the desired bench-to-bedside strategy of translational medicine for this complex disorder.


Assuntos
Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Animais , Humanos , Camundongos , Camundongos Mutantes
7.
Front Cell Neurosci ; 10: 106, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199660

RESUMO

Members of the Shank family of multidomain proteins (Shank1, Shank2, and Shank3) are core components of the postsynaptic density (PSD) of excitatory synapses. At synaptic sites Shanks serve as scaffolding molecules that cluster neurotransmitter receptors as well as cell adhesion molecules attaching them to the actin cytoskeleton. In this study we investigated the synapse specific localization of Shank1-3 and focused on well-defined synaptic contacts within the hippocampal formation. We found that all three family members are present only at VGLUT1-positive synapses, which is particularly visible at mossy fiber contacts. No costaining was found at VGLUT2-positive contacts indicating that the molecular organization of VGLUT2-associated PSDs diverges from classical VGLUT1-positive excitatory contacts in the hippocampus. In light of SHANK mutations in neuropsychiatric disorders, this study indicates which glutamatergic networks within the hippocampus will be primarily affected by shankopathies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...