Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(3): 1248-1255, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31664769

RESUMO

Controlling the distribution of ionizable groups of opposite charge in microgels is an extremely challenging task, which could open new pathways to design a new generation of stimuli-responsive colloids. Herein, we report a straightforward approach for the synthesis of polyampholyte Janus-like microgels, where ionizable groups of opposite charge are located on different sides of the colloidal network. This synthesis approach is based on the controlled self-assembly of growing polyelectrolyte microgel precursors during the precipitation polymerization process. We confirmed the morphology of polyampholyte Janus-like microgels and demonstrate that they are capable of responding quickly to changes in both pH and temperature in aqueous solutions.

2.
Biomacromolecules ; 20(4): 1578-1591, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30822384

RESUMO

A striking discovery in our work is that the distribution of ionizable groups in polyampholyte microgels (random and core-shell) controls the interactions with the captured proteins. Polyampholyte microgels are capable to switch reversibly their charges from positive to negative depending on pH. In this work, we synthesized differently structured polyampholyte microgels with controlled amounts and different distribution of acidic and basic moieties as colloidal carriers to study the loading and release of the model protein cytochrome c (cyt-c). Polyampholyte microgels were first loaded with cyt-c using the electrostatic attraction under pH 8 when the microgels were oppositely charged with respect to the protein. Then the protein release was investigated under different pH (3, 6, and 8) both with experimental methods and molecular dynamics simulations. For microgels with a random distribution of ionizable groups complete and accelerated (compared to polyelectrolyte counterpart) release of cyt-c was observed due to electrostatic repulsive interactions. For core-shell structured microgels with defined ionizable groups, it was possible to entrap the protein inside the neutral core through the formation of a positively charged shell, which acts as an electrostatic potential barrier. We postulate that this discovery allows the design of functional colloidal carriers with programmed release kinetics for applications in drug delivery, catalysis, and biomaterials.


Assuntos
Citocromos c/química , Enzimas Imobilizadas/química , Metacrilatos/química , Microgéis/química , Preparações de Ação Retardada/química , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA