Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Acta Biomater ; 164: 317-331, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37098400

RESUMO

Myelinated axons (nerve fibers) efficiently transmit signals throughout the brain via action potentials. Multiple methods that are sensitive to axon orientations, from microscopy to magnetic resonance imaging, aim to reconstruct the brain's structural connectome. As billions of nerve fibers traverse the brain with various possible geometries at each point, resolving fiber crossings is necessary to generate accurate structural connectivity maps. However, doing so with specificity is a challenging task because signals originating from oriented fibers can be influenced by brain (micro)structures unrelated to myelinated axons. X-ray scattering can specifically probe myelinated axons due to the periodicity of the myelin sheath, which yields distinct peaks in the scattering pattern. Here, we show that small-angle X-ray scattering (SAXS) can be used to detect myelinated, axon-specific fiber crossings. We first demonstrate the capability using strips of human corpus callosum to create artificial double- and triple-crossing fiber geometries, and we then apply the method in mouse, pig, vervet monkey, and human brains. We compare results to polarized light imaging (3D-PLI), tracer experiments, and to outputs from diffusion MRI that sometimes fails to detect crossings. Given its specificity, capability of 3-dimensional sampling and high resolution, SAXS could serve as a ground truth for validating fiber orientations derived using diffusion MRI as well as microscopy-based methods. STATEMENT OF SIGNIFICANCE: To study how the nerve fibers in our brain are interconnected, scientists need to visualize their trajectories, which often cross one another. Here, we show the unique capacity of small-angle X-ray scattering (SAXS) to study these fiber crossings without use of labeling, taking advantage of SAXS's specificity to myelin - the insulating sheath that is wrapped around nerve fibers. We use SAXS to detect double and triple crossing fibers and unveil intricate crossings in mouse, pig, vervet monkey, and human brains. This non-destructive method can uncover complex fiber trajectories and validate other less specific imaging methods (e.g., MRI or microscopy), towards accurate mapping of neuronal connectivity in the animal and human brain.


Assuntos
Encéfalo , Humanos , Animais , Camundongos , Suínos , Chlorocebus aethiops , Haplorrinos , Espalhamento a Baixo Ângulo , Raios X , Difração de Raios X , Encéfalo/diagnóstico por imagem
2.
Neurophotonics ; 9(3): 032206, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35355657

RESUMO

Significance: Multiscale imaging holds particular relevance to neuroscience, where it helps integrate the cellular and molecular biological scale, which is most accessible to interventions, with holistic organ-level evaluations, most relevant with respect to function. Being inextricably interdisciplinary, multiscale imaging benefits substantially from incremental technology adoption, and a detailed overview of the state-of-the-art is vital to an informed application of imaging methods. Aim: In this article, we lay out the background and methodological aspects of multimodal approaches combining functional magnetic resonance imaging (fMRI) with simultaneous optical measurement or stimulation. Approach: We focus on optical techniques as these allow, in conjunction with genetically encoded proteins (e.g. calcium indicators or optical signal transducers), unprecedented read-out and control specificity for individual cell-types during fMRI experiments, while leveraging non-interfering modalities. Results: A variety of different solutions for optical/fMRI methods has been reported ranging from bulk fluorescence recordings via fiber photometry to high resolution microscopy. In particular, the plethora of optogenetic tools has enabled the transformation of stimulus-evoked fMRI into a cell biological interrogation method. We discuss the capabilities and limitations of these genetically encoded molecular tools in the study of brain phenomena of great methodological and neuropsychiatric interest-such as neurovascular coupling (NVC) and neuronal network mapping. We provide a methodological description of this interdisciplinary field of study, and focus in particular on the limitations of the widely used blood oxygen level dependent (BOLD) signal and how multimodal readouts can shed light on the contributions arising from neurons, astrocytes, or the vasculature. Conclusion: We conclude that information from multiple signaling pathways must be incorporated in future forward models of the BOLD response to prevent erroneous conclusions when using fMRI as a surrogate measure for neural activity. Further, we highlight the potential of direct neuronal stimulation via genetically defined brain networks towards advancing neurophysiological understanding and better estimating effective connectivity.

3.
Nat Commun ; 12(1): 2941, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011929

RESUMO

Myelin insulates neuronal axons and enables fast signal transmission, constituting a key component of brain development, aging and disease. Yet, myelin-specific imaging of macroscopic samples remains a challenge. Here, we exploit myelin's nanostructural periodicity, and use small-angle X-ray scattering tensor tomography (SAXS-TT) to simultaneously quantify myelin levels, nanostructural integrity and axon orientations in nervous tissue. Proof-of-principle is demonstrated in whole mouse brain, mouse spinal cord and human white and gray matter samples. Outcomes are validated by 2D/3D histology and compared to MRI measurements sensitive to myelin and axon orientations. Specificity to nanostructure is exemplified by concomitantly imaging different myelin types with distinct periodicities. Finally, we illustrate the method's sensitivity towards myelin-related diseases by quantifying myelin alterations in dysmyelinated mouse brain. This non-destructive, stain-free molecular imaging approach enables quantitative studies of myelination within and across samples during development, aging, disease and treatment, and is applicable to other ordered biomolecules or nanostructures.


Assuntos
Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/ultraestrutura , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Tomografia Computadorizada por Raios X/métodos , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Sistema Nervoso Central/diagnóstico por imagem , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas da Mielina/metabolismo , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Neuroimagem/métodos , Estudo de Prova de Conceito , Espalhamento a Baixo Ângulo , Medula Espinal/metabolismo , Medula Espinal/ultraestrutura
4.
Angiogenesis ; 24(4): 823-842, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34046769

RESUMO

Pericytes play essential roles in blood-brain barrier integrity and their dysfunction is implicated in neurological disorders such as stroke although the underlying mechanisms remain unknown. Hypoxia-inducible factor-1 (HIF-1), a master regulator of injury responses, has divergent roles in different cells especially during stress scenarios. On one hand HIF-1 is neuroprotective but on the other it induces vascular permeability. Since pericytes are critical for barrier stability, we asked if pericyte HIF-1 signaling impacts barrier integrity and injury severity in a mouse model of ischemic stroke. We show that pericyte HIF-1 loss of function (LoF) diminishes ischemic damage and barrier permeability at 3 days reperfusion. HIF-1 deficiency preserved barrier integrity by reducing pericyte death thereby maintaining vessel coverage and junctional protein organization, and suppressing vascular remodeling. Importantly, considerable improvements in sensorimotor function were observed in HIF-1 LoF mice indicating that better vascular functionality post stroke improves outcome. Thus, boosting vascular integrity by inhibiting pericytic HIF-1 activation and/or increasing pericyte survival may be a lucrative option to accelerate recovery after severe brain injury.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Barreira Hematoencefálica , Hipóxia , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Pericitos
5.
Neuroimage ; 237: 118111, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940140

RESUMO

Intense efforts are underway to develop functional imaging modalities for capturing brain activity at the whole organ scale with high spatial and temporal resolution. Functional optoacoustic (fOA) imaging is emerging as a new tool to monitor multiple hemodynamic parameters across the mouse brain, but its sound validation against other neuroimaging modalities is often lacking. Here we investigate mouse brain responses to peripheral sensory stimulation using both fOA and functional ultrasound (fUS) imaging. The two modalities operate under similar spatio-temporal resolution regime, with a potential to provide synergistic and complementary hemodynamic readouts. Specific contralateral activation was observed with sub-millimeter spatial resolution with both methods. Sensitivity to hemodynamic activity was found to be on comparable levels, with the strongest responses obtained in the oxygenated hemoglobin channel of fOA. While the techniques attained highly correlated hemodynamic responses, the differential fOA readings of oxygenated and deoxygenated haemoglobin provided complementary information to the blood flow contrast of fUS. The multi-modal approach may thus emerge as a powerful tool providing new insights into brain function, complementing our current knowledge generated with well-established neuroimaging methods.


Assuntos
Neuroimagem Funcional/métodos , Acoplamento Neurovascular , Técnicas Fotoacústicas/métodos , Córtex Somatossensorial/diagnóstico por imagem , Ultrassonografia/métodos , Animais , Comportamento Animal/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Acoplamento Neurovascular/fisiologia , Estimulação Física
6.
Animals (Basel) ; 11(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467584

RESUMO

In rodent models the use of functional magnetic resonance imaging (fMRI) under anesthesia is common. The anesthetic protocol might influence fMRI readouts either directly or via changes in physiological parameters. As long as those factors cannot be objectively quantified, the scientific validity of fMRI in rodents is impaired. In the present systematic review, literature analyzing in rats and mice the influence of anesthesia regimes and concurrent physiological functions on blood oxygen level dependent (BOLD) fMRI results was investigated. Studies from four databases that were searched were selected following pre-defined criteria. Two separate articles publish the results; the herewith presented article includes the analyses of 83 studies. Most studies found differences in BOLD fMRI readouts with different anesthesia drugs and dose rates, time points of imaging or when awake status was compared to anesthetized animals. To obtain scientifically valid, reproducible results from rodent fMRI studies, stable levels of anesthesia with agents suitable for the model under investigation as well as known and objectively quantifiable effects on readouts are, thus, mandatory. Further studies should establish dose ranges for standardized anesthetic protocols and determine time windows for imaging during which influence of anesthesia on readout is objectively quantifiable.

7.
Front Neurosci ; 14: 577119, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192261

RESUMO

Background: To understand brain function in health and disease, functional magnetic resonance imaging (fMRI) is widely used in rodent models. Because animals need to be immobilised for image acquisition, fMRI is commonly performed under anaesthesia. The choice of anaesthetic protocols and may affect fMRI readouts, either directly or via changing physiological balance, and thereby threaten the scientific validity of fMRI in rodents. Methods: The present study systematically reviewed the literature investigating the influence of different anaesthesia regimes and changes in physiological parameters as confounders of blood oxygen level dependent (BOLD) fMRI in rats and mice. Four databases were searched, studies selected according to pre-defined criteria, and risk of bias assessed for each study. Results are reported in two separate articles; this part of the review focuses on effects of changes in physiological parameters. Results: A total of 121 publications was included, of which 49 addressed effects of changes in physiological parameters. Risk of bias was high in all included studies. Blood oxygenation [arterial partial pressure of oxygen (paO2)], ventilation [arterial partial pressure of carbon dioxide (paCO2)] and arterial blood pressure affected BOLD fMRI readouts across various experimental paradigms. Conclusions: Blood oxygenation, ventilation and arterial blood pressure should be monitored and maintained at stable physiological levels throughout experiments. Appropriate anaesthetic management and monitoring are crucial to obtain scientifically valid, reproducible results from fMRI studies in rodent models.

8.
Circ Res ; 127(4): 466-482, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32404031

RESUMO

RATIONALE: Endothelial cells (ECs) are highly glycolytic and generate the majority of their energy via the breakdown of glucose to lactate. At the same time, a main role of ECs is to allow the transport of glucose to the surrounding tissues. GLUT1 (glucose transporter isoform 1/Slc2a1) is highly expressed in ECs of the central nervous system (CNS) and is often implicated in blood-brain barrier (BBB) dysfunction, but whether and how GLUT1 controls EC metabolism and function is poorly understood. OBJECTIVE: We evaluated the role of GLUT1 in endothelial metabolism and function during postnatal CNS development as well as at the adult BBB. METHODS AND RESULTS: Inhibition of GLUT1 decreases EC glucose uptake and glycolysis, leading to energy depletion and the activation of the cellular energy sensor AMPK (AMP-activated protein kinase), and decreases EC proliferation without affecting migration. Deletion of GLUT1 from the developing postnatal retinal endothelium reduces retinal EC proliferation and lowers vascular outgrowth, without affecting the number of tip cells. In contrast, in the brain, we observed a lower number of tip cells in addition to reduced brain EC proliferation, indicating that within the CNS, organotypic differences in EC metabolism exist. Interestingly, when ECs become quiescent, endothelial glycolysis is repressed, and GLUT1 expression increases in a Notch-dependent fashion. GLUT1 deletion from quiescent adult ECs leads to severe seizures, accompanied by neuronal loss and CNS inflammation. Strikingly, this does not coincide with BBB leakiness, altered expression of genes crucial for BBB barrier functioning nor reduced vascular function. Instead, we found a selective activation of inflammatory and extracellular matrix related gene sets. CONCLUSIONS: GLUT1 is the main glucose transporter in ECs and becomes uncoupled from glycolysis during quiescence in a Notch-dependent manner. It is crucial for developmental CNS angiogenesis and adult CNS homeostasis but does not affect BBB barrier function.


Assuntos
Barreira Hematoencefálica/fisiologia , Encéfalo/irrigação sanguínea , Células Endoteliais/metabolismo , Transportador de Glucose Tipo 1/fisiologia , Neovascularização Fisiológica , Vasos Retinianos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Encéfalo/citologia , Movimento Celular , Proliferação de Células , Células Endoteliais/fisiologia , Endotélio , Endotélio Vascular/fisiologia , Metabolismo Energético , Glucose/metabolismo , Transportador de Glucose Tipo 1/antagonistas & inibidores , Glicólise , Humanos , Camundongos , Retina/citologia
9.
Neuroimage ; 204: 116214, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568873

RESUMO

While diffusion MRI (dMRI) is currently the method of choice to non-invasively probe tissue microstructure and study structural connectivity in the brain, its spatial resolution is limited and its results need structural validation. Current ex vivo methods employed to provide 3D fiber orientations have limitations, including tissue-distorting sample preparation, small field of view or inability to quantify 3D fiber orientation distributions. 3D fiber orientation in tissue sections can be obtained from 3D scanning small-angle X-ray scattering (3D sSAXS) by analyzing the anisotropy of scattering signals. Here we adapt the 3D sSAXS method for use in brain tissue, exploiting the high sensitivity of the SAXS signal to the ordered molecular structure of myelin. We extend the characterization of anisotropy from vectors to tensors, employ the Funk-Radon-Transform for converting scattering information to real space fiber orientations, and demonstrate the feasibility of the method in thin sections of mouse brain with minimal sample preparation. We obtain a second rank tensor representing the fiber orientation distribution function (fODF) for every voxel, thereby generating fODF maps. Finally, we illustrate the potential of 3D sSAXS by comparing the result with diffusion MRI fiber orientations in the same mouse brain. We show a remarkably good correspondence, considering the orthogonality of the two methods, i.e. the different physical processes underlying the two signals. 3D sSAXS can serve as validation method for microstructural MRI, and can provide novel microstructural insights for the nervous system, given the method's orthogonality to dMRI, high sensitivity to myelin sheath's orientation and abundance, and the possibility to extract myelin-specific signal and to perform micrometer-resolution scanning.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/ultraestrutura , Imagem de Difusão por Ressonância Magnética/normas , Fibras Nervosas Mielinizadas/ultraestrutura , Neuroimagem/normas , Tomografia Computadorizada por Raios X/normas , Difração de Raios X/normas , Animais , Estudos de Viabilidade , Camundongos , Neuroimagem/métodos , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos , Difração de Raios X/métodos
10.
Sci Rep ; 9(1): 10563, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332260

RESUMO

Non-invasive investigation of physiological changes and metabolic events associated with brain activity in mice constitutes a major challenge. Conventionally, fMRI assesses neuronal activity by evaluating activity-evoked local changes in blood oxygenation levels (BOLD). In isoflurane-anaethetized mice, however, we found that BOLD signal changes during paw stimulation appear to be dominated by arousal responses even when using innocuous stimuli. Widespread responses involving both hemispheres have been observed in response to unilateral stimulation. MRS allows probing metabolic changes associated with neuronal activation and provides a complementary readout to BOLD fMRI for investigating brain activity. In this study we evaluated the sensitivity of a free induction decay (FID) based spectroscopic imaging (MRSI) protocol for the measurement of alterations in glutamate levels elicited by unilateral electrical paw stimulation at different current amplitudes. Coronal MRSI maps of glutamate distribution with 17 × 17 voxels of 1 µl volume have been recorded with a temporal resolution of 12 min. Significant region-specific increases in glutamate levels have been observed in the contralateral but not in the ispiateral S1 somatosensory cortex upon stimulation. The amplitude of glutamate changes increased in a dose-dependent manner with the stimulus amplitude. The study demonstrates feasibility of functional MRSI in mice for studying activity-evoked glutamate changes in a temporo-spatially resolved manner.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Análise Espectral/métodos , Animais , Mapeamento Encefálico/métodos , Estimulação Elétrica , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Neuroimagem Funcional/métodos , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/sangue , Sistema Nervoso Periférico/fisiologia , Sensibilidade e Especificidade , Córtex Somatossensorial/fisiologia , Análise Espectral/estatística & dados numéricos
11.
Neuroimage ; 191: 392-402, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30807820

RESUMO

Previous work has demonstrated that neuroimaging biomarkers which capture functional connectivity of the brain can be used to define a specific and robust endophenotype in Fmr1-/y mice, a well-established animal model of human Fragile-X Syndrome (FXS). However, it is currently unknown whether this macroscopic measure of brain connectivity is sufficiently sensitive to reliably detect changes caused by pharmacological interventions. Here we inhibited the activity of the metabotropic glutamate receptor-5 (mGluR5) using AFQ056/Mavoglurant, a drug that is assumed to normalize excitatory/inhibitory neural signaling imbalances in FXS. We employed resting-state-fMRI (rs-fMRI) and diffusion-weighted imaging (DWI) to test whether Mavoglurant re-established brain connectivity - at least partly - within some of the affected circuits in Fmr1-/y mice that are related to social behavior deficits. In line with previous findings, we observed that Fmr1-/y mice exhibited impaired social interaction, reduced connectivity in three main functional networks and altered network topology. At the group level, Mavoglurant did neither rescue abnormal social behavioral nor white matter abnormalities; however, for some, but not all of these circuits Mavoglurant had a genotype-specific effect of restoring functional connectivity. These results show that rs-fMRI connectivity is sufficiently sensitive to pick up system-level changes after the pharmacological inhibition of mGluR5 activity. However, our results also show that the effects of Mavoglurant are confined to specific networks suggesting that behavioral benefits might be restricted to narrow functional domains.


Assuntos
Encéfalo/efeitos dos fármacos , Indóis/farmacologia , Vias Neurais/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/metabolismo , Neuroimagem/métodos
12.
J Cereb Blood Flow Metab ; 39(10): 2022-2034, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-29768943

RESUMO

The majority of stroke patients develop post-stroke fatigue, a symptom which impairs motivation and diminishes the success of rehabilitative interventions. We show that large cortical strokes acutely reduce activity levels in rats for 1-2 weeks as a physiological response paralleled by signs of systemic inflammation. Rats were exposed early (1-2 weeks) or late (3-4 weeks after stroke) to an individually monitored enriched environment to stimulate self-controlled high-intensity sensorimotor training. A group of animals received Anti-Nogo antibodies for the first two weeks after stroke, a neuronal growth promoting immunotherapy already in clinical trials. Early exposure to the enriched environment resulted in poor outcome: Training intensity was correlated to enhanced systemic inflammation and functional impairment. In contrast, animals starting intense sensorimotor training two weeks after stroke preceded by the immunotherapy revealed better recovery with functional outcome positively correlated to the training intensity and the extent of re-innervation of the stroke denervated cervical hemi-cord. Our results suggest stroke-induced fatigue as a biological purposeful reaction of the organism during neuronal remodeling, enabling new circuit formation which will then be stabilized or pruned in the subsequent rehabilitative training phase. However, intense training too early may lead to wrong connections and is thus less effective.


Assuntos
Fadiga/fisiopatologia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Animais , Modelos Animais de Doenças , Fadiga/etiologia , Fadiga/reabilitação , Feminino , Inflamação/etiologia , Inflamação/fisiopatologia , Plasticidade Neuronal , Ratos , Ratos Long-Evans , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/complicações
13.
Nat Protoc ; 13(5): 840-855, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29599439

RESUMO

Despite the growing popularity of blood oxygen level-dependent (BOLD) functional MRI (fMRI), understanding of its underlying principles is still limited. This protocol describes a technique for simultaneous measurement of neural activity using fluorescent calcium indicators together with the corresponding hemodynamic BOLD fMRI response in the mouse brain. Our early work using small-molecule fluorophores in rats gave encouraging results but was limited to acute measurements using synthetic dyes. Our latest procedure combines fMRI with optical detection of cell-type-specific virally delivered GCaMP6, a genetically encoded calcium indicator (GECI). GCaMP6 fluorescence, which increases upon calcium binding, is collected by a chronically implanted optical fiber, allowing longitudinal studies in mice. The chronic implant, placed horizontally on the skull, has an angulated tip that reflects light into the brain and is connected via fiber optics to a remote optical setup. The technique allows access to the neocortex and does not require adaptations of commercial MRI hardware. The hybrid approach permits fiber-optic calcium recordings with simultaneous artifact-free BOLD fMRI with full brain coverage and 1-s temporal resolution using standard gradient-echo echo-planar imaging (GE-EPI) sequences. The method provides robust, cell-type-specific readouts to link neural activity to BOLD signals, as emonstrated for task-free ('resting-state') conditions and in response to hind-paw stimulation. These results highlight the power of fiber photometry combined with fMRI, which we aim to further advance in this protocol. The approach can be easily adapted to study other molecular processes using suitable fluorescent indicators.


Assuntos
Encéfalo/fisiologia , Sinalização do Cálcio , Tecnologia de Fibra Óptica/métodos , Proteínas Luminescentes/análise , Imageamento por Ressonância Magnética/métodos , Neurônios/fisiologia , Oxigênio/metabolismo , Animais , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador , Camundongos
14.
Psychopharmacology (Berl) ; 234(13): 2019-2030, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28382543

RESUMO

RATIONALE: The dopamine D2 receptor (D2R) couples to inhibitory Gi/o proteins and is targeted by antipsychotic and antiparkinsonian drugs. Beta-arrestin2 binds to the intracellular regions of the agonist-occupied D2R to terminate G protein activation and promote internalization, but also to initiate downstream signaling cascades which have been implicated in psychosis. Functional magnetic resonance imaging (fMRI) has proven valuable for measuring dopamine receptor-mediated changes in neuronal activity, and might enable beta-arrestin2 function to be studied in vivo. OBJECTIVES: The present study examined fMRI blood oxygenation level dependent (BOLD) signal changes elicited by a dopamine agonist in wild-type (WT) and beta-arrestin2 knockout (KO) mice, to investigate whether genetic deletion of beta-arrestin2 prolongs or otherwise modifies D2R-dependent responses. METHODS: fMRI BOLD data were acquired on a 9.4 T system. During scans, animals received 0.2 mg/kg apomorphine, i.v. In a subset of experiments, animals were pretreated with 2 mg/kg of the D2R antagonist, eticlopride. RESULTS: Following apomorphine administration, BOLD signal decreases were observed in caudate/putamen of WT and KO animals. The time course of response decay in caudate/putamen was significantly slower in KO vs. WT animals. In cingulate cortex, an initial BOLD signal decrease was followed by a positive response component in WT but not in KO animals. Eticlopride pretreatment significantly reduced apomorphine-induced BOLD signal changes. CONCLUSIONS: The prolonged striatal response decay rates in KO animals might reflect impaired D2R desensitization, consistent with the known function of beta-arrestin2. Furthermore, the apomorphine-induced positive response component in cingulate cortex may depend on beta-arrestin2 signaling downstream of D2R.


Assuntos
Antiparkinsonianos/farmacologia , Antipsicóticos/farmacologia , Apomorfina/administração & dosagem , Corpo Estriado/metabolismo , Neostriado/metabolismo , Receptores de Dopamina D2/metabolismo , Transdução de Sinais/efeitos dos fármacos , beta-Arrestina 2 , Animais , Antiparkinsonianos/metabolismo , Antipsicóticos/metabolismo , Apomorfina/química , Agonistas de Dopamina/farmacologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Receptores de Dopamina D2/química , Receptores de Dopamina D2/fisiologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-28217085

RESUMO

fMRI studies in mice typically require the use of anesthetics. Yet, it is known that anesthesia alters responses to stimuli or functional networks at rest. In this work, we have used Dual Regression analysis Network Modeling to investigate the effects of two commonly used anesthetics, isoflurane and medetomidine, on rs-fMRI derived functional networks, and in particular to what extent anesthesia affected the interaction within and between these networks. Experimental data have been used from a previous study (Grandjean et al., 2014). We applied multivariate ICA analysis and Dual Regression to infer the differences in functional connectivity between isoflurane- and medetomidine-anesthetized mice. Further network analysis was performed to investigate within- and between-network connectivity differences between these anesthetic regimens. The results revealed five major networks in the mouse brain: lateral cortical, associative cortical, default mode, subcortical, and thalamic network. The anesthesia regime had a profound effect both on within- and between-network interactions. Under isoflurane anesthesia predominantly intra- and inter-cortical interactions have been observed, with only minor interactions involving subcortical structures and in particular attenuated cortico-thalamic connectivity. In contrast, medetomidine-anesthetized mice displayed subcortical functional connectivity including interactions between cortical and thalamic ICA components. Combining the two anesthetics at low dose resulted in network interaction that constituted the superposition of the interaction observed for each anesthetic alone. The study demonstrated that network modeling is a promising tool for analyzing the brain functional architecture in mice and comparing alterations therein caused by different physiological or pathological states. Understanding the differential effects of anesthetics on brain networks and their interaction is essential when interpreting fMRI data recorded under specific physiological and pathological conditions.


Assuntos
Anestésicos/farmacologia , Mapeamento Encefálico/métodos , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Isoflurano/farmacologia , Imageamento por Ressonância Magnética/métodos , Medetomidina/farmacologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/diagnóstico por imagem , Anestésicos/administração & dosagem , Animais , Interações Medicamentosas , Isoflurano/administração & dosagem , Camundongos , Modelos Neurológicos , Descanso
16.
J Cereb Blood Flow Metab ; 37(7): 2368-2382, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27596833

RESUMO

Previously, we reported widespread bilateral increases in stimulus-evoked functional magnetic resonance imaging signals in mouse brain to unilateral sensory paw stimulation. We attributed the pattern to arousal-related cardiovascular changes overruling cerebral autoregulation thereby masking specific signal changes elicited by local neuronal activity. To rule out the possibility that interhemispheric neuronal communication might contribute to bilateral functional magnetic resonance imaging responses, we compared stimulus-evoked functional magnetic resonance imaging responses to unilateral hindpaw stimulation in acallosal I/LnJ, C57BL/6, and BALB/c mice. We found bilateral blood-oxygenation-level dependent signal changes in all three strains, ruling out a dominant contribution of transcallosal communication as reason for bilaterality. Analysis of functional connectivity derived from resting-state functional magnetic resonance imaging, revealed that bilateral cortical functional connectivity is largely abolished in I/LnJ animals. Cortical functional connectivity in all strains correlated with structural connectivity in corpus callosum as revealed by diffusion tensor imaging. Given the profound influence of systemic hemodynamics on stimulus-evoked functional magnetic resonance imaging outcomes, we evaluated whether functional connectivity data might be affected by cerebrovascular parameters, i.e. baseline cerebral blood volume, vascular reactivity, and reserve. We found that effects of cerebral hemodynamics on functional connectivity are largely outweighed by dominating contributions of structural connectivity. In contrast, contributions of transcallosal interhemispheric communication to the occurrence of ipsilateral functional magnetic resonance imaging response of equal amplitude to unilateral stimuli seem negligible.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Circulação Cerebrovascular/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Extremidade Inferior/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Animais , Estimulação Elétrica , Feminino , Frequência Cardíaca/fisiologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Reflexo/fisiologia
17.
Sci Rep ; 6: 24523, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27080031

RESUMO

Functional magnetic resonance imaging (fMRI) has revolutionized neuroscience by opening a unique window that allows neurocircuitry function and pathological alterations to be probed non-invasively across brain disorders. Here we report a novel sustainable anesthesia procedure for small animal neuroimaging that overcomes shortcomings of anesthetics commonly used in rodent fMRI. The significantly improved preservation of cerebrovascular dynamics enhances sensitivity to neural activity changes for which it serves as a proxy in fMRI readouts. Excellent cross-species/strain applicability provides coherence among preclinical findings and is expected to improve translation to clinical fMRI investigations. The novel anesthesia procedure based on the GABAergic anesthetic etomidate was extensively validated in fMRI studies conducted in a range of genetically engineered rodent models of autism and strains commonly used for transgenic manipulations. Etomidate proved effective, yielded long-term stable physiology with basal cerebral blood flow of ~0.5 ml/g/min and full recovery. Cerebrovascular responsiveness of up to 180% was maintained as demonstrated with perfusion- and BOLD-based fMRI upon hypercapnic, pharmacological and sensory stimulation. Hence, etomidate lends itself as an anesthetic-of-choice for translational neuroimaging studies across rodent models of brain disorders.


Assuntos
Anestesia , Imageamento por Ressonância Magnética , Neuroimagem , Anestésicos Inalatórios/farmacologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Etomidato/farmacologia , Isoflurano/farmacologia , Medetomidina/farmacologia , Camundongos , Ratos , Especificidade da Espécie
18.
Neuroimage ; 120: 55-63, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26166624

RESUMO

Functional proton magnetic resonance spectroscopy (1H-MRS) enables the non-invasive assessment of neural activity by measuring signals arising from endogenous metabolites in a time resolved manner. Proof-of-principle of this approach has been demonstrated in humans and rats; yet functional 1H-MRS has not been applied in mice so far, although it would be of considerable interest given the many genetically engineered models of neurological disorders established in this species only. Mouse 1H-MRS is challenging as the high demands on spatial resolution typically result in long data acquisition times not commensurable with functional studies. Here, we propose an approach based on spectroscopic imaging in combination with the acquisition of the free induction decay to maximize signal intensity. Highly resolved metabolite maps have been recorded from mouse brain with 12 min temporal resolution. This enabled monitoring of metabolic changes following the administration of bicuculline, a GABA-A receptor antagonist. Changes in levels of metabolites involved in energy metabolism (lactate and phosphocreatine) and neurotransmitters (glutamate) were investigated in a region-dependent manner and shown to scale with the bicuculline dose. GABAergic inhibition induced spectral changes characteristic for increased neurotransmitter turnover and oxidative stress. In contrast to metabolic readouts, BOLD and CBV fMRI responses did not scale with the bicuculline dose indicative of the failure of neurovascular coupling. Nevertheless fMRI measurements supported the notion of increased oxidative stress revealed by functional MRS. Hence, the combined analysis of metabolic and hemodynamic changes in response to stimulation provides complementary insight into processes associated with neural activity.


Assuntos
Encéfalo/metabolismo , Epilepsia/metabolismo , Antagonistas de Receptores de GABA-A/farmacologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Acoplamento Neurovascular/fisiologia , Estresse Oxidativo/fisiologia , Espectroscopia de Prótons por Ressonância Magnética/métodos , Animais , Bicuculina/farmacologia , Encéfalo/fisiopatologia , Epilepsia/induzido quimicamente , Feminino , Camundongos , Camundongos Endogâmicos C57BL
19.
Neuroimage ; 116: 40-9, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25979665

RESUMO

In recent years, the number of functional MRI (fMRI) studies in mice has been rapidly increasing. Technological improvements provide the sensitivity required to match the high demands on spatial and temporal resolution and to analyze fast and small signal components of the fMRI response. Yet, the interpretation of mouse fMRI data largely relies on assumptions that were uncritically adopted from previous research in humans or rats. Here, we show based on a large dataset employing an innocuous electrical stimulation paradigm, that (1) the shape of the HRF shapes comprises significant transient signal components; correspondingly analysis procedures have to account for this dynamic nature and allow for variable response functions. (2) The effects of the anesthetics are crucial in determining the shape of the hemodynamic response function (HRF) and also influence the spatial specificity of BOLD signal. (3) The dominant systemic confounding contributions elicited by stimulus-evoked cardiovascular responses observed in mouse fMRI when applying block stimuli may be largely avoided by a milder event-related design applying a randomly spaced single pulse train (RSSPT). Thereby the spatial specificity of the fMRI response is largely retained. We conclude that the sensitivity, specificity and interpretability of stimulus-evoked BOLD signals in mice can be improved by combining appropriate stimulation paradigms with analysis procedures that include adapted HRFs.


Assuntos
Anestésicos/administração & dosagem , Mapeamento Encefálico , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Animais , Estimulação Elétrica , Feminino , Membro Posterior , Isoflurano/administração & dosagem , Medetomidina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Propofol/administração & dosagem , Uretana/farmacologia
20.
PLoS One ; 10(5): e0126513, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25950440

RESUMO

Functional magnetic resonance imaging (fMRI) in rodents enables non-invasive studies of brain function in response to peripheral input or at rest. In this study we describe a thermal stimulation paradigm using infrared laser diodes to apply noxious heat to the forepaw of mice in order to study nociceptive processing. Stimulation at 45 and 46°C led to robust BOLD signal changes in various brain structures including the somatosensory cortices and the thalamus. The BOLD signal amplitude scaled with the temperature applied but not with the area irradiated by the laser beam. To demonstrate the specificity of the paradigm for assessing nociceptive signaling we administered the quaternary lidocaine derivative QX-314 to the forepaws, which due to its positive charge cannot readily cross biological membranes. However, upon activation of TRPV1 channels following the administration of capsaicin the BOLD signal was largely abolished, indicative of a selective block of the C-fiber nociceptors due to QX-314 having entered the cells via the now open TRPV1 channels. This demonstrates that the cerebral BOLD response to thermal noxious paw stimulation is specifically mediated by C-fibers.


Assuntos
Membro Anterior/fisiologia , Temperatura Alta , Imageamento por Ressonância Magnética/métodos , Nociceptividade/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...