Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sustain Sci ; 14(4): 1041-1056, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258813

RESUMO

Permafrost in northern Canada is susceptible to degradation due to rapid climate change, with hazard mapping promoted as an important activity to guide sustainable community adaptation and planning. This paper presents a framework for evaluating permafrost mapping exercises designed to inform climate change adaptation actions. We apply the framework using a case study of the Incorporating Climate Change into Land Development-Terrain Analysis project (ICCiLD). ICCiLD is a hazard mapping project utilizing interferometric synthetic aperture radar to monitor ground disturbance and categorize land development suitability in seven communities in the territory of Nunavut, Canada. We looked at one of the communities, Arviat, as our case study. We examined technical data and drew upon semi-structured interviews (n = 19) with map creators and users. We found ICCiLD added new and relevant information for community planning, increased awareness of the risks posed by permafrost thaw and built stakeholder relations. Strong coordination and high public consciousness of local climate impacts emerged as key factors underpinning project success. Nevertheless, in the case of Arviat, the effectiveness of the hazard maps in influencing land-use planning was constrained by communication challenges between project creators and end-users. These challenges included limited community access to the data and uncertainty surrounding how to operationalize the map suitability classifications. Broader climate change adaptation challenges included the presence of other more immediate community planning priorities and a limited ability to incorporate Indigenous ways of knowing into a technical mapping project. The lessons from this evaluation provide insight for the development of mapping-based adaptations across Arctic regions.

2.
J Maps ; 11(2): 361-370, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27019665

RESUMO

In recent years, remote sensing, morphometric analysis, and other computational concepts and tools have invigorated the field of geomorphological mapping. Automated interpretation of digital terrain data based on impartial rules holds substantial promise for large dataset processing and objective landscape classification. However, the geomorphological realm presents tremendous complexity and challenges in the translation of qualitative descriptions into geomorphometric semantics. Here, the simple, conventional distinction of V-shaped fluvial and U-shaped glacial valleys was analyzed quantitatively using multi-scale curvature and a novel morphometric variable termed Difference of Minimum Curvature (DMC). We used this automated terrain analysis approach to produce a raster map at a scale of 1:6,000,000 showing the distribution of glaciated valleys across Europe and western Asia. The data set has a cell size of 3 arc seconds and consists of more than 40 billion grid cells. Glaciated U-shaped valleys commonly associated with erosion by warm-based glaciers are abundant in the alpine regions of mid Europe and western Asia but also occur at the margins of mountain ice sheets in Scandinavia. The high-level correspondence with field mapping and the fully transferable semantics validate this approach for automated analysis of yet unexplored terrain around the globe and qualify for potential applications on other planetary bodies like Mars.

3.
Geomorphology (Amst) ; 209(100): 53-65, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24748703

RESUMO

Erosion by glacial and fluvial processes shapes mountain landscapes in a long-recognized and characteristic way. Upland valleys incised by fluvial processes typically have a V-shaped cross-section with uniform and moderately steep slopes, whereas glacial valleys tend to have a U-shaped profile with a changing slope gradient. We present a novel regional approach to automatically differentiate between fluvial and glacial mountain landscapes based on the relation of multi-scale curvature and drainage area. Sample catchments are delineated and multiple moving window sizes are used to calculate per-cell curvature over a variety of scales ranging from the vicinity of the flow path at the valley bottom to catchment sections fully including valley sides. Single-scale curvature can take similar values for glaciated and non-glaciated catchments but a comparison of multi-scale curvature leads to different results according to the typical cross-sectional shapes. To adapt these differences for automated classification of mountain landscapes into areas with V- and U-shaped valleys, curvature values are correlated with drainage area and a new and simple morphometric parameter, the Difference of Minimum Curvature (DMC), is developed. At three study sites in the western United States the DMC thresholds determined from catchment analysis are used to automatically identify 5 × 5 km quadrats of glaciated and non-glaciated landscapes and the distinctions are validated by field-based geological and geomorphological maps. Our results demonstrate that DMC is a good predictor of glacial imprint, allowing automated delineation of glacially and fluvially incised mountain landscapes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA