Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 64(15): 39, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153753

RESUMO

Purpose: Proliferative vitreoretinopathy (PVR) is the most common cause of failure of surgically repaired rhegmatogenous retinal detachment (RRD). Chemically induced and cell injection PVR models do not fully simulate the clinical characteristics of PVR in the post-RRD context. There is an unmet need for translational models in which to study mechanisms and treatments specific to RRD-PVR. Methods: RRD was induced in adult Dutch Belted rabbits. Posterior segments were fixed or processed for RNA sequencing at 6 hours and 2, 7, 14, and 35 days after induction. Histochemical staining and immunolabeling for glial fibrillary acidic protein, alpha smooth muscle actin, vascular endothelial growth factor receptor 2, CD68, and RPE 65 kDa protein were performed, and labeling intensity was scored. Single cell RNA sequencing was performed. Results: Acute histopathological changes included intravitreal and intraretinal hemorrhage, leukocytic vitritis, chorioretinitis, and retinal rarefaction. Chronic lesions showed retinal atrophy, gliosis, fibrotic subretinal membranes, and epiretinal fibrovascular proliferation. Fibrillar collagen was present in the fibrocellular and fibrovascular membranes in chronic lesions. Moderate to strong labeling of glia and vasculature was detected in chronic lesions. At day 14, most cells profiled by single cell sequencing were identified as Mϋller glia and microglia, consistent with immunolabeling. Expression of several fibrillar collagen genes was upregulated in chronic lesions. Conclusions: Histological and transcriptional features of this rabbit model simulate important features of human RRD-PVR, including the transition to chronic intraretinal and periretinal fibrosis. This animal model of RRD with features of PVR will enable further research on targeted treatment interventions.


Assuntos
Descolamento Retiniano , Vitreorretinopatia Proliferativa , Adulto , Animais , Humanos , Coelhos , Vitreorretinopatia Proliferativa/etiologia , Descolamento Retiniano/etiologia , Fator A de Crescimento do Endotélio Vascular , Modelos Animais , Fibrose , Colágenos Fibrilares
2.
Artigo em Inglês | MEDLINE | ID: mdl-37992236

RESUMO

At the earliest stage of battery development, differential scanning calorimetry (DSC) of a sample with all battery cell stack materials can provide quantitative data on the reaction thermochemistry. The resulting quantitative thermochemical map of expected reactions upon heating can then guide chemistry and component development toward improved cell safety. In this work, we construct Li0.43CoO2 + C + PVDF|Li6.4La3Zr1.4Ta0.6O12|Li microcell DSC samples with capacity-matched electrodes and test to 500 °C. Notable observations are: (1) ∼74% of the O2 released from the Li0.43CoO2 cathode reacts with C to form CO2 rather than with molten Li to produce Li2O, (2) PVDF pyrolysis (>400 °C) releases HF gas that exothermically reacts with Li to form LiF, and (3) reactions involving oxygen (e.g., CO2 and Li2O formation) account for ∼60% of the total heat released, and reactions involving HF (e.g., LiF formation) account for ∼36% of the total heat released.

3.
Transl Vis Sci Technol ; 11(10): 36, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36282118

RESUMO

Purpose: To evaluate the molecular, pharmacokinetic, and pharmacological properties of three anti-vascular endothelial growth factor (VEGF) agents-aflibercept, brolucizumab, and ranibizumab-and to provide a prediction of the optimal design of an intravitreal VEGF challenge in rabbits to assess the preclinical in vivo activity of the different anti-VEGF agents. Methods: Biochemical analyses and cellular and animal models of retinopathy were used to characterize anti-VEGF efficacy. Anti-VEGF biochemical binding affinity was determined through a kinetic exclusion assay. The in vitro potency was investigated by a calcium mobilization assay. Pharmacokinetic parameters were estimated for each drug to predict intraocular exposure relationships among the agents. The in silico modeling efforts informed the design of an in vivo rabbit model of VEGF-induced retinal hyperpermeability to determine the extent of VEGF neutralization in vivo. Consequently, data generated from the in vivo study enabled pharmacokinetic analysis and the generation of a logistical model describing the impact of the anti-VEGF agents on the VEGF-induced vascular leakage in rabbits. Results: The three anti-VEGF agents ranked from most efficacious to least efficacious as aflibercept, brolucizumab, and ranibizumab, with results consistent and significant within each individual characterization experiment. Conclusions: This composite study demonstrated how the molecular properties of aflibercept, brolucizumab, and ranibizumab translate into differences of in vivo efficacy, with results in line with the reported literature. Translational Relevance: In silico, in vitro, and in vivo integrated studies provide information that enables the enhanced characterization of translational properties of anti-VEGF agents currently used for the treatment of retinal diseases.


Assuntos
Cálcio , Ranibizumab , Animais , Coelhos , Ranibizumab/farmacologia , Ranibizumab/uso terapêutico , Fatores de Crescimento Endotelial , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Injeções Intravítreas , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
FASEB J ; 34(8): 10117-10131, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32525594

RESUMO

Mast cells (MCs) are the initial responders of innate immunity and their degranulation contribute to various etiologies. While the abundance of MCs in the choroid implies their fundamental importance in the eye, little is known about the significance of MCs and their degranulation in choroid. The cause of geographic atrophy (GA), a progressive dry form of age-related macular degeneration is elusive and there is currently no therapy for this blinding disorder. Here we demonstrate in both human GA and a rat model for GA, that MC degranulation and MC-derived tryptase are central to disease progression. Retinal pigment epithelium degeneration followed by retinal and choroidal thinning, characteristic phenotypes of GA, were driven by continuous choroidal MC stimulation and activation in a slow release fashion in the rat. Genetic manipulation of MCs, pharmacological intervention targeting MC degranulation with ketotifen fumarate or inhibition of MC-derived tryptase with APC 366 prevented all of GA-like phenotypes following MC degranulation in the rat model. Our results demonstrate the fundamental role of choroidal MC involvement in GA disease etiology, and will provide new opportunities for understanding GA pathology and identifying novel therapies targeting MCs.


Assuntos
Atrofia Geográfica/patologia , Mastócitos/patologia , Animais , Linhagem Celular , Corioide/metabolismo , Corioide/patologia , Modelos Animais de Doenças , Atrofia Geográfica/metabolismo , Humanos , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Mastócitos/metabolismo , Ratos , Ratos Sprague-Dawley , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Triptases/metabolismo
5.
J Ocul Pharmacol Ther ; 29(8): 760-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23844757

RESUMO

PURPOSE: To evaluate the toxicokinetics and tolerability (local ocular and general toxicity) of the anti-inflammatory agent, dexamethasone phosphate (a prodrug of dexamethasone) delivered to the eye in rabbits by transscleral iontophoresis. METHODS: Female rabbits (n=6/group) received dexamethasone phosphate (40 mg/mL ophthalmic solution, EGP-437) transsclerally to the right eye (OD) using the Eyegate(®) II ocular iontophoresis delivery system once biweekly for 24 consecutive weeks at current doses of 10, 14, and 20 mA-min and current levels up to, and including -4 mA for 3.5-5 min. The study included 2 control groups (n=6/group): (1) a noniontophoresis control [an ocular applicator-loaded citrate buffer (placebo) without current] and (2) an iontophoresis control (a citrate buffer plus cathode iontophoresis at 20 mA-min, -4 mA for 5 min). Recoverability was evaluated 4 weeks following the last dose in 2 animals per group. The left eye (OS) was untreated and served as an internal control for each animal. Ocular and general safety of dexamethasone phosphate and dexamethasone were assessed. Other evaluations included toxicokinetics, ophthalmic examinations, intraocular pressure (IOP) measurements, electroretinographs, clinical observations, body weight, hematology and serum chemistry, gross necropsy, organ weight, and microscopic histopathology. RESULTS: The biweekly transscleral iontophoresis with either the citrate buffer or dexamethasone phosphate at cathodic doses up to, and including 20 mA-min and currents up to, and including -4 mA for 24 weeks was well-tolerated. Transient signs of conjunctival hyperemia and chemosis, mild corneal opacity, and fluorescein staining of the cornea were noted and attributed to expected ocular reactions to the temporary placement of the ocular applicator and application of iontophoresis. There were no dexamethasone phosphate-, dexamethasone-, or iontophoresis-related effects on IOP, electroretinography, or histopathology. Reductions in body weight gain, anemia, decreased leukocyte and lymphocyte counts, compromised liver function, enlarged liver, and reduced spleen weight were consistent with systemic corticosteroid-mediated pharmacology, repeated use of anesthesia, stress, and sedentariness, and unlikely to be related to iontophoresis application. CONCLUSIONS: The results of this investigation suggest that repeated transscleral iontophoresis with dexamethasone phosphate may be safe for use as a treatment for inflammatory ocular disorders that require prolonged and/or repeated corticosteroid therapy.


Assuntos
Dexametasona/análogos & derivados , Sistemas de Liberação de Medicamentos , Olho/efeitos dos fármacos , Glucocorticoides/efeitos adversos , Iontoforese , Animais , Peso Corporal/efeitos dos fármacos , Dexametasona/administração & dosagem , Dexametasona/efeitos adversos , Dexametasona/sangue , Relação Dose-Resposta a Droga , Esquema de Medicação , Olho/metabolismo , Olho/patologia , Feminino , Glucocorticoides/administração & dosagem , Glucocorticoides/sangue , Soluções Oftálmicas , Tamanho do Órgão/efeitos dos fármacos , Especificidade de Órgãos , Coelhos
6.
Appl Opt ; 51(15): 2925-34, 2012 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-22614595

RESUMO

We present a study of Poincaré-beam polarization patterns produced by collinear superposition of two Laguerre-Gauss spatial modes in orthogonal polarization eigenstates (circular or linear). We explore theoretically and experimentally the combinations that are possible. We find that the resulting patterns can be explained in terms of mappings of points on the Poincaré sphere onto points in the transverse plane of the beam mode. The modes that we produced yielded many types of polarization singularities.

7.
J Control Release ; 147(2): 225-31, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20655965

RESUMO

The fundamental understanding of ocular drug delivery using iontophoresis is not at the same level as that for transdermal electrotransport. Research has therefore been undertaken to characterise the electrical properties of the sclera (charge, permselectivity, and isoelectric point (pI)) and to determine the basics of iontophoretic transport of model neutral, cationic, and anionic species (respectively, mannitol, timolol, and dexamethasone phosphate). Like the skin, the sclera supports a net negative charge under physiological pH conditions and has a pI between 3.5 and 4. Equally, the principles of trans-scleral iontophoretic transport of low molecular weight compounds are consistent with those observed for skin. Iontophoretic delivery of timolol and dexamethasone phosphate was proportional to applied current and drug concentration, and trans-scleral iontophoresis in rabbits led to enhanced intraocular levels of these compounds compared to passive delivery. The behaviour of higher molecular weight species such as peptide drugs and other biopharmaceuticals (e.g., proteins and oligonucleotides) has not been fully characterised. Further work has been undertaken, therefore, to examine the trans-scleral iontophoresis of vancomycin, a glycopeptide antibiotic with a relatively high molecular weight of 1448 Da. It was indeed possible to deliver vancomycin by iontophoresis but trans-scleral transport did not increase linearly with either increasing current density or peptide concentration.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Iontoforese , Preparações Farmacêuticas/administração & dosagem , Esclera/metabolismo , Animais , Transporte Biológico , Cromatografia Líquida de Alta Pressão , Dexametasona/administração & dosagem , Dexametasona/análogos & derivados , Dexametasona/química , Dexametasona/farmacocinética , Sistemas de Liberação de Medicamentos/instrumentação , Eletrodos , Desenho de Equipamento , Feminino , Técnicas In Vitro , Manitol/administração & dosagem , Manitol/química , Manitol/farmacocinética , Peso Molecular , Preparações Farmacêuticas/química , Coelhos , Espectrometria de Massas em Tandem , Timolol/administração & dosagem , Timolol/química , Timolol/farmacocinética , Vancomicina/administração & dosagem , Vancomicina/química , Vancomicina/farmacocinética
8.
J Biol Chem ; 282(38): 28045-56, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17626017

RESUMO

The longer splice isoforms of vascular endothelial growth factor-A (VEGF-A), including mouse VEGF164, contain a highly basic heparin-binding domain (HBD), which imparts the ability of these isoforms to be deposited in the heparan sulfate-rich extracellular matrix and to interact with the prototype sulfated glycosaminoglycan, heparin. The shortest isoform, VEGF120, lacks this highly basic domain and is freely diffusible upon secretion. Although the HBD has been attributed significant relevance to VEGF-A biology, the molecular determinants of the heparin-binding site are unknown. We used site-directed mutagenesis to identify amino acid residues that are critical for heparin binding activity of the VEGF164 HBD. We focused on basic residues and found Arg-13, Arg-14, and Arg-49 to be critical for heparin binding and interaction with extracellular matrix in tissue samples. We also examined the cellular and biochemical consequences of abolishing heparin-binding function, measuring the ability of the mutants to interact with VEGF receptors, induce endothelial cell gene expression, and trigger microvessel outgrowth. Induction of tissue factor expression, vessel outgrowth, and binding to VEGFR2 were unaffected by the HBD mutations. In contrast, the HBD mutants showed slightly decreased binding to the NRP1 (neuropilin-1) receptor, and analyses suggested the heparin and NRP1 binding sites to be distinct but overlapping. Finally, mutations that affect the heparin binding activity also led to an unexpected reduction in the affinity of VEGF164 binding specifically to VEGFR1. This finding provides a potential basis for previous observations suggesting enhanced potency of VEGF164 versus VEGF120 in VEGFR1-mediated signaling in inflammatory cells.


Assuntos
Heparina/química , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/fisiologia , Sequência de Aminoácidos , Animais , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Suínos , Fator A de Crescimento do Endotélio Vascular/química
9.
Am J Pathol ; 171(1): 53-67, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17591953

RESUMO

Vascular endothelial growth factor-A (VEGF-A) has recently been recognized as an important neuroprotectant in the central nervous system. Given its position as an anti-angiogenic target in the treatment of human diseases, understanding the extent of VEGF's role in neural cell survival is paramount. Here, we used a model of ischemia-reperfusion injury and found that VEGF-A exposure resulted in a dose-dependent reduction in retinal neuron apoptosis. Although mechanistic studies suggested that VEGF-A-induced volumetric blood flow to the retina may be partially responsible for the neuroprotection, ex vivo retinal culture demonstrated a direct neuroprotective effect for VEGF-A. VEGF receptor-2 (VEGFR2) expression was detected in several neuronal cell layers of the retina, and functional analyses showed that VEGFR2 was involved in retinal neuroprotection. VEGF-A was also shown to be involved in the adaptive response to retinal ischemia. Ischemic preconditioning 24 hours before ischemia-reperfusion injury increased VEGF-A levels and substantially decreased the number of apoptotic retinal cells. The protective effect of ischemic preconditioning was reversed after VEGF-A inhibition. Finally, chronic inhibition of VEGF-A function in normal adult animals led to a significant loss of retinal ganglion cells yet had no observable effect on several vascular parameters. These findings have implications for both neural pathologies and ocular vascular diseases, such as diabetic retinopathy and age-related macular degeneration.


Assuntos
Traumatismo por Reperfusão/metabolismo , Retina/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Adulto , Animais , Apoptose , Velocidade do Fluxo Sanguíneo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Degeneração Macular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Long-Evans , Traumatismo por Reperfusão/patologia , Retina/efeitos dos fármacos , Vasos Retinianos/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia
10.
Invest Ophthalmol Vis Sci ; 48(3): 1212-8, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17325165

RESUMO

PURPOSE: Retinal ganglion cell (RGC) loss occurs in response to increased intraocular pressure (IOP) and/or retinal ischemia in glaucoma and leads to impairment of vision. This study was undertaken to test the efficacy of erythropoietin (EPO) in providing neuroprotection to RGCs in vivo. METHODS: The neuroprotective effects of EPO were studied in the DBA/2J mouse model of glaucoma. Mice were intraperitoneally injected with control substances or various doses of EPO, starting at the age of 6 months and continuing for an additional 2, 4, or 6 months. RGCs were labeled retrogradely by a gold tracer. IOP was measured with a microelectric-mechanical system, and EPO receptor (EPOR) expression was detected by immunohistochemistry. Axonal death in the optic nerve was quantified by para-phenylenediamine staining, and a complete blood count system was used to measure the number of erythrocytes. RESULTS: In DBA/2J mice, the average number of viable RGCs significantly decreased from 4 months to 10 months, with an inverse correlation between the number of dead optic nerve axons and viable RGCs. Treatment with EPO at doses of 3000, 6000, and 12,000 U/kg body weight per week all prevented significant RGC loss, compared with untreated DBA/2J control animals. EPO effects were similar to those of memantine, a known neuroprotective agent. IOP, in contrast, was unchanged by both EPO and memantine. Finally, EPOR was expressed in the RGC layer in both DBA/2J and C57BL/6J mice. CONCLUSIONS: EPO promoted RGC survival in DBA/2J glaucomatous mice without affecting IOP. These results suggest that EPO may be a potential therapeutic neuroprotectant in glaucoma.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Eritropoetina/farmacologia , Glaucoma/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Doenças do Nervo Óptico/prevenção & controle , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Axônios/efeitos dos fármacos , Modelos Animais de Doenças , Técnica Indireta de Fluorescência para Anticorpo , Glaucoma/metabolismo , Glaucoma/patologia , Pressão Intraocular/efeitos dos fármacos , Memantina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Microscopia de Fluorescência , Nervo Óptico/efeitos dos fármacos , Doenças do Nervo Óptico/metabolismo , Doenças do Nervo Óptico/patologia , Receptores da Eritropoetina/metabolismo , Proteínas Recombinantes , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
11.
Am J Pathol ; 170(1): 316-33, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17200204

RESUMO

Here, we examine the role of "non-muscle" caveolins (Cav-1 and Cav-2) in skeletal muscle biology. Our results indicate that skeletal muscle fibers from male Cav-1(-/-) and Cav-2(-/-) mice show striking abnormalities, such as tubular aggregates, mitochondrial proliferation/aggregation, and increased numbers of M-cadherin-positive satellite cells. Notably, these skeletal muscle defects were more pronounced with increasing age. Because Cav-2-deficient mice displayed normal expression levels of Cav-1, whereas Cav-1-null mice exhibited an almost complete deficiency in Cav-2, these skeletal muscle abnormalities seem to be due to loss of Cav-2. Thus, Cav-2(-/-) mice represent a novel animal model-and the first genetically well-defined mouse model-that can be used to study the pathogenesis of tubular aggregate formation, which remains a poorly understood age-related skeletal muscle abnormality. Finally, because Cav-1 and Cav-2 were not expressed within mature skeletal myofibers, our results indicate that development of these abnormalities probably originates in stem/precursor cells, such as satellite cells or myoblasts. Consistent with this hypothesis, skeletal muscle isolated from male Cav-3(-/-) mice did not show any of these abnormalities. As such, this is the first study linking stem cells with the genesis of these intriguing muscle defects.


Assuntos
Caveolina 1/genética , Caveolina 2/genética , Mitocôndrias Musculares , Fibras Musculares Esqueléticas , Doenças Musculares/genética , Animais , Caderinas/biossíntese , Caveolina 1/deficiência , Caveolina 2/deficiência , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/análise , Predisposição Genética para Doença , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/ultraestrutura , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/anormalidades , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mioblastos/metabolismo , Mioblastos/patologia
12.
Dev Biol ; 303(2): 825-37, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17198697

RESUMO

Thin spongy myocardium is critical at early embryonic stage [before embryonic day (E) 13.5 in mice] to allow diffusion of oxygen and nutrients to the developing cardiomyocytes. However, establishment of compact myocardium at later stage ( approximately E16.5) during development is necessary to prepare for the increase in demand for blood circulation. Elucidating molecular targets of the spongy-compact myocardium transition between E13.5 and E16.5 in heart development is thus important. Previous studies demonstrated that multiple transcription factors and signaling pathways are involved in the regulation and function of the myocardium in heart development. Disruption of certain transcription factors or critical components of signaling pathways frequently causes structural malformation in heart and persistence of "thin spongy myocardium". We have recently demonstrated activation of the calcineurin/NFAT signaling pathway at E14.5 in developing myocardium. Constitutive inhibition of the calcineurin/NFAT signaling pathway caused embryonic lethality. Molecular targets downstream of the calcineurin/NFAT signaling pathway, however, remains elusive. Here, we report transcription targets, independently and dependently, regulated by the calcineurin/NFAT signaling during the E13.5-E16.5 myocardium transition. We have uncovered that expression of one-third of the induced genes during myocardium transition is calcineurin/NFAT-dependent. Among these calcineurin/NFAT-dependent transcription targets, there is a dosage-dependent regulation. Molecular studies indicate that formation of distinct NFAT:DNA complex, in part, accounts for the dosage-dependent regulation. Thus, in addition to temporal and spatial regulation, dosage-dependent threshold requirement provides another mechanism to modulate transcription response mediated by the calcineurin/NFAT signaling during heart development.


Assuntos
Calcineurina/metabolismo , Coração Fetal/embriologia , Coração Fetal/metabolismo , Fatores de Transcrição NFATC/metabolismo , Animais , Sequência de Bases , Calcineurina/genética , Primers do DNA/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/genética , Gravidez , Transdução de Sinais , Transcrição Gênica
13.
Cancer Biol Ther ; 5(3): 292-7, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16418573

RESUMO

Caveolin-1 (Cav-1) is the main structural protein of caveolae, plasma membrane invaginations that have been implicated in vesicular transport, cholesterol homeostasis, and the regulation of signal transduction. Previous in vivo studies have established a correlation between Cav-1 expression levels and milk production. In the normal mouse mammary gland, Cav-1 levels were shown to be downregulated during late pregnancy and lactation, via a Ras-p42/44-MAPK- dependent mechanism. Conversely, mammary glands from Cav-1 null-/- mice exhibit premature lactation, with augmented development of the lobulo-alveolar compartment and hyper-activation of the Jak-2/STAT5a signaling cascade. However, it remains unknown whether these phenotypes are cell-autonomous, i.e., intrinsic to the alveolar mammary epithelial cells, or whether stromal or adipocyte-secreted factors contribute. To directly address this issue, we have isolated primary mammary epithelial cells from wild-type (WT) and Cav-1 null-/- mammary glands. We cultured them either in a 2D model (monolayers of mammary epithelial cells) or in a 3D system on exogenous basement membrane (Matrigel; to reconstitute the minimal lactating unit, i.e., the mammary acinus). We show here that Cav-1 deficient mammary epithelial cells display the ability to spontaneously generate milk droplets, and to secrete them into the acinar lumen. Interestingly, such milk production occurs in the absence of lactogenic stimulation. Our results show that monolayers of Cav-1 null mammary epithelial cells are enriched in milk droplets, as judged by both (1) phase contrast microscopy and (2) immunofluorescence analysis with an antiserum directed against mouse milk proteins. Consistently, Cav-1 deficient mammary acini display increased milk production and secretion, as evaluated by Western blot analysis and electron microscopic examination. Mechanistically, we show that loss of Cav-1 in mammary epithelial cells induces the baseline constitutive hyper-activation of STAT5a signaling, which normally controls the temporal progression of lactogenesis in the mammary gland. The possible implications of our findings for understanding mammary tumorigenesis are also discussed.


Assuntos
Caveolina 1/genética , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , Fator de Transcrição STAT5/metabolismo , Animais , Western Blotting , Caveolina 1/fisiologia , Técnicas de Cultura de Células , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Células Epiteliais/citologia , Feminino , Imunofluorescência , Camundongos , Camundongos Knockout , Transdução de Sinais
14.
Am J Pathol ; 168(1): 292-309, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16400031

RESUMO

During breast cancer development, the luminal space of the mammary acinar unit fills with proliferating epithelial cells that exhibit growth factor-independence, cell attachment defects, and a more invasive fibroblastic phenotype. Here, we used primary cultures of mammary epithelial cells derived from genetically engineered mice to identify caveolin-1 (Cav-1) as a critical factor for maintaining the normal architecture of the mammary acinar unit. Isolated cultures of normal mammary epithelial cells retained the capacity to generate mammary acini within extracellular matrix. However, those from Cav-1 (-/-) mice exhibited defects in three-dimensional acinar architecture, including disrupted lumen formation and epidermal growth factor-independent growth due to hyperactivation of the p42/44 mitogen-activated protein kinase cascade. In addition, Cav-1-null mammary epithelial cells deprived of exogenous extracellular matrix underwent a spontaneous epithelial-mesenchymal transition, with reorganization of the actin cytoskeleton, and E-cadherin redistribution. Mechanistically, these phenotypic changes appear to be caused by increases in matrix metalloproteinase-2/9 secretion and transforming growth factor-beta/Smad-2 hyperactivation. Finally, loss of Cav-1 potentiated the ability of growth factors (hepatocyte growth factor and basic fibroblast growth factor) to induce mammary acini branching, indicative of a more invasive fibroblastic phenotype. Thus, a Cav-1 deficiency profoundly affects mammary epithelia by modulating the activation state of important signaling cascades. Primary cultures of Cav-1-deficient mammary epithelia will provide a valuable new model to study the spatial/temporal progression of mammary cell transformation.


Assuntos
Caveolina 1/deficiência , Transformação Celular Neoplásica/ultraestrutura , Glândulas Mamárias Animais/patologia , Lesões Pré-Cancerosas/patologia , Transdução de Sinais/fisiologia , Animais , Western Blotting , Células Cultivadas , Feminino , Imunofluorescência , Substâncias de Crescimento/metabolismo , Glândulas Mamárias Animais/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Invasividade Neoplásica/patologia , Lesões Pré-Cancerosas/metabolismo , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo
15.
J Biol Chem ; 280(25): 24085-94, 2005 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-15843370

RESUMO

Adipose tissue plays an active role in normal metabolic homeostasis as well as in the development of human disease. Beyond its obvious role as a depot for triglycerides, adipose tissue controls energy expenditure through secretion of several factors. Little attention has been given to the role of adipocytes in the pathogenesis of Chagas disease and the associated metabolic alterations. Our previous studies have indicated that hyperglycemia significantly increases parasitemia and mortality in mice infected with Trypanosoma cruzi. We determined the consequences of adipocyte infection in vitro and in vivo. Cultured 3T3-L1 adipocytes can be infected with high efficiency. Electron micrographs of infected cells revealed a large number of intracellular parasites that cluster around lipid droplets. Furthermore, infected adipocytes exhibited changes in expression levels of a number of different adipocyte-specific or adipocyte-enriched proteins. The adipocyte is therefore an important target cell during acute Chagas disease. Infection of adipocytes by T. cruzi profoundly influences the pattern of adipokines. During chronic infection, adipocytes may represent an important long-term reservoir for parasites from which relapse of infection can occur. We have demonstrated that acute infection has a unique metabolic profile with a high degree of local inflammation in adipose tissue, hypoadiponectinemia, hypoglycemia, and hypoinsulinemia but with relatively normal glucose disposal during an oral glucose tolerance test.


Assuntos
Adipócitos/metabolismo , Trypanosoma cruzi/patogenicidade , Tripanossomíase/patologia , Células 3T3-L1 , Adipócitos/parasitologia , Animais , Sequência de Bases , Western Blotting , Primers do DNA , Hipoglicemia/complicações , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica de Varredura , Tripanossomíase/complicações , Tripanossomíase/parasitologia
16.
Diabetes ; 54(3): 679-86, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15734843

RESUMO

Recently, we have shown that loss of caveolin-1 leads to marked alterations in insulin signaling and lipolysis in white adipose tissue. However, little is known about the role of caveolin-1 in brown adipose tissue (BAT), a tissue responsible for nonshivering thermogenesis. Here, we show that caveolin-1 null mice have a mildly, yet significantly, decreased resting core body temperature. To investigate this in detail, we next subjected the mice to fasting (for 24 h) or cold treatment (4 degrees C for 24 h), individually or in combination. Interestingly, caveolin-1 null mice showed markedly decreased body temperatures in response to fasting or fasting/cold treatment; however, cold treatment alone had no effect. In addition, under these conditions caveolin-1 null mice failed to show the normal increase in serum nonesterified fatty acids induced by fasting or fasting/cold treatment, suggesting that these mice are unable to liberate triglyceride stores for heat production. In accordance with these results, the triglyceride content of BAT was reduced nearly 10-fold in wild-type mice after fasting/cold treatment, but it was reduced only 3-fold in caveolin-1 null mice. Finally, electron microscopy of adipose tissue revealed dramatic perturbations in the mitochondria of caveolin-1 null interscapular brown adipocytes. Taken together, our data provide the first molecular genetic evidence that caveolin-1 plays a critical functional and structural role in the modulation of thermogenesis via an effect on lipid mobilization.


Assuntos
Tecido Adiposo Marrom/metabolismo , Caveolinas/fisiologia , Termogênese/fisiologia , Tecido Adiposo Marrom/ultraestrutura , Animais , Caveolina 1 , Caveolinas/genética , Temperatura Baixa , Ácidos Graxos não Esterificados/sangue , Privação de Alimentos/fisiologia , Expressão Gênica , Lipólise/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/ultraestrutura , Triglicerídeos/metabolismo
17.
Am J Physiol Cell Physiol ; 288(6): C1317-31, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15689413

RESUMO

Caveolin-3 (Cav-3) is expressed predominantly in skeletal muscle fibers, where it drives caveolae formation at the muscle cell's plasma membrane. In vitro studies have suggested that Cav-3 may play a positive role in insulin signaling and energy metabolism. We directly address the in vivo metabolic consequences of genetic ablation of Cav-3 in mice as it relates to insulin action, glucose metabolism, and lipid homeostasis. At age 2 mo, Cav-3 null mice are significantly larger than wild-type mice, and display significant postprandial hyperinsulinemia, whole body insulin resistance, and whole body glucose intolerance. Studies using hyperinsulinemic-euglycemic clamps revealed that Cav-3 null mice exhibited 20% and 40% decreases in insulin-stimulated whole body glucose uptake and whole body glycogen synthesis, respectively. Whole body insulin resistance was mostly attributed to 20% and 40% decreases in insulin-stimulated glucose uptake and glucose metabolic flux in the skeletal muscle of Cav-3 null mice. In addition, insulin-mediated suppression of hepatic glucose production was significantly reduced in Cav-3 null mice, indicating hepatic insulin resistance. Insulin-stimulated glucose uptake in white adipose tissue, which does not express Cav-3, was decreased by approximately 70% in Cav-3 null mice, suggestive of an insulin-resistant state for this tissue. During fasting, Cav-3 null mice possess normal insulin receptor protein levels in their skeletal muscle. However, after 15 min of acute insulin stimulation, Cav-3 null mice show dramatically reduced levels of the insulin receptor protein, compared with wild-type mice treated identically. These results suggest that Cav-3 normally functions to increase the stability of the insulin receptor at the plasma membrane, preventing its rapid degradation, i.e., by blocking or slowing ligand-induced receptor downregulation. Thus our results demonstrate the importance of Cav-3 in regulating whole body glucose homeostasis in vivo and its possible role in the development of insulin resistance. These findings may have clinical implications for the early diagnosis and treatment of caveolinopathies.


Assuntos
Composição Corporal/fisiologia , Caveolinas/fisiologia , Resistência à Insulina/fisiologia , Músculo Esquelético/fisiologia , Receptor de Insulina/fisiologia , Tecido Adiposo/fisiologia , Animais , Glicemia/fisiologia , Caveolina 3 , Caveolinas/genética , Expressão Gênica , Glicogênio/metabolismo , Insulina/sangue , Ilhotas Pancreáticas/patologia , Fígado/metabolismo , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais
18.
Am J Physiol Cell Physiol ; 288(3): C677-91, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15548572

RESUMO

It is generally well accepted that caveolin-3 expression is muscle specific, whereas caveolin-1 and -2 are coexpressed in a variety of cell types, including adipocytes, endothelial cells, epithelial cells, and fibroblasts. Caveolin-1 and -2 are known to form functional hetero-oligomeric complexes in cells where they are coexpressed, whereas caveolin-3 forms homo-oligomeric high molecular mass complexes. Although caveolin-2 might be expected to interact in a similar manner with caveolin-3, most studies indicate that this is not the case. However, this view has recently been challenged as it has been demonstrated that caveolin-2 and -3 are coexpressed in primary cultures of cardiac myocytes, where these two proteins can be coimmunoprecipitated. Thus it remains controversial whether caveolin-2 interacts with caveolin-3. Here, we directly address the issue of caveolin isoform protein-protein interactions by means of three distinct molecular genetic approaches. First, using caveolin-1-deficient mouse embryonic fibroblasts, in which we have stably expressed caveolin-1, -2, or -3, we find that caveolin-1 interacts with caveolin-2 in this setting, whereas caveolin-3 does not, in agreement with most published observations. Next, we used a transfected L6 myoblast cell system expressing all three caveolin proteins. Surprisingly, we found that caveolin-1, -2, and -3 all coimmunoprecipitate in this cell type, suggesting that this interaction is muscle cell specific. Similar results were obtained when the skeletal muscle of caveolin-1 transgenic animals was analyzed for caveolin-1 and caveolin-3 coimmunoprecipitation. Thus we conclude that all three caveolins can interact to form a discrete hetero-oligomeric complex, but that such complex formation is clearly muscle specific.


Assuntos
Caveolinas/metabolismo , Fibroblastos/metabolismo , Músculos/metabolismo , Mioblastos/metabolismo , Isoformas de Proteínas/metabolismo , Animais , Cavéolas/química , Cavéolas/metabolismo , Caveolinas/genética , Linhagem Celular , Detergentes/metabolismo , Fibroblastos/ultraestrutura , Substâncias Macromoleculares , Camundongos , Camundongos Knockout , Músculos/citologia , Mioblastos/ultraestrutura , Octoxinol/metabolismo , Isoformas de Proteínas/genética , Retroviridae/genética , Retroviridae/metabolismo
19.
Physiol Rev ; 84(4): 1341-79, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15383654

RESUMO

Although they were discovered more than 50 years ago, caveolae have remained enigmatic plasmalemmal organelles. With their characteristic "flasklike" shape and virtually ubiquitous tissue distribution, these interesting structures have been implicated in a wide range of cellular functions. Similar to clathrin-coated pits, caveolae function as macromolecular vesicular transporters, while their unique lipid composition classifies them as plasma membrane lipid rafts, structures enriched in a variety of signaling molecules. The caveolin proteins (caveolin-1, -2, and -3) serve as the structural components of caveolae, while also functioning as scaffolding proteins, capable of recruiting numerous signaling molecules to caveolae, as well as regulating their activity. That so many signaling molecules and signaling cascades are regulated by an interaction with the caveolins provides a paradigm by which numerous disease processes may be affected by ablation or mutation of these proteins. Indeed, studies in caveolin-deficient mice have implicated these structures in a host of human diseases, including diabetes, cancer, cardiovascular disease, atherosclerosis, pulmonary fibrosis, and a variety of degenerative muscular dystrophies. In this review, we provide an in depth summary regarding the mechanisms by which caveolae and caveolins participate in human disease processes.


Assuntos
Cavéolas/fisiologia , Caveolinas/fisiologia , Doença/etiologia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Caveolina 1 , Humanos , Dados de Sequência Molecular , Homologia de Sequência
20.
Biochemistry ; 43(26): 8312-21, 2004 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-15222744

RESUMO

Neointima formation is a process characterized by smooth muscle cell (SMC) proliferation and extracellular matrix deposition in the vascular intimal layer. Here, we critically evaluate the role of caveolin-1 (Cav-1) in the pathogenesis of neointima formation. Cav-1 and caveolae organelles are particularly abundant in SMCs, where they are thought to function in membrane trafficking and signal transduction events. To directly evaluate the role of Cav-1 in the pathogenesis of neointimal lesions, we used Cav-1-deficient (Cav-1 -/-) mice as a model system. The right common carotid artery of wild-type and Cav-1 -/- mice was ligated just proximal to its bifurcation. Specimens were then harvested 4-weeks postligation and processed for morphometric and immunohistochemical analyses. The carotids of Cav-1 -/- mice showed significantly more intimal hyperplasia with subtotal luminal obstruction, as compared to wild-type mice. These neointimal lesions consisted mainly of SMCs. Mechanistically, neointimal lesions derived from Cav-1 -/- mice exhibited higher levels of phospho-p42/44 MAP kinase and cyclin D1 immunostaining, consistent with the idea that Cav-1 functions as a negative regulator of signal transduction. A significant increase in phospho-Rb (Ser780) immunostaining was also observed, in line with the upregulation of cyclin D1. In conclusion, using a carotid artery blood-flow cessation model, we show that genetic ablation of Cav-1 in mice stimulates SMC proliferation (neointimal hyperplasia), with concomitant activation of the p42/44 MAP kinase cascade and upregulation of cyclin D1. Importantly, our current study is the first to investigate the role of Cav-1 in SMC proliferation in the vascular system using Cav-1 -/- mice.


Assuntos
Caveolinas/genética , Caveolinas/fisiologia , Miócitos de Músculo Liso/metabolismo , Animais , Artérias Carótidas/metabolismo , Caveolina 1 , Divisão Celular , Eletroforese em Gel de Poliacrilamida , Matriz Extracelular/metabolismo , Genótipo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia , Microscopia Eletrônica , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...