Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Immunol ; 15: 1339304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361952

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine hormone with many physiological and biological roles. Melatonin is an antioxidant, anti-inflammatory, free radical scavenger, circadian rhythm regulator, and sleep hormone. However, its most popular role is the ability to regulate sleep through the circadian rhythm. Interestingly, recent studies have shown that melatonin is an important and essential hormone during pregnancy, specifically in the placenta. This is primarily due to the placenta's ability to synthesize its own melatonin rather than depending on the pineal gland. During pregnancy, melatonin acts as an antioxidant and anti-inflammatory, which is necessary to ensure a stable environment for both the mother and the fetus. It is an essential antioxidant in the placenta because it reduces oxidative stress by constantly scavenging for free radicals, i.e., maintain the placenta's integrity. In a healthy pregnancy, the maternal immune system is constantly altered to accommodate the needs of the growing fetus, and melatonin acts as a key anti-inflammatory by regulating immune homeostasis during early and late gestation. This literature review aims to identify and summarize melatonin's role as a powerful antioxidant and anti-inflammatory that reduces oxidative stress and inflammation to maintain a favorable homeostatic environment in the placenta throughout gestation.


Assuntos
Melatonina , Gravidez , Feminino , Humanos , Melatonina/farmacologia , Antioxidantes , Placenta , Sequestradores de Radicais Livres , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
2.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445695

RESUMO

Chikungunya virus (CHIKV) has become a significant public health concern due to the increasing number of outbreaks worldwide and the associated comorbidities. Despite substantial efforts, there is no specific treatment or licensed vaccine against CHIKV to date. The E2 glycoprotein of CHIKV is a promising vaccine candidate as it is a major target of neutralizing antibodies during infection. In this study, we evaluated the immunogenicity of two DNA vaccines (a non-targeted and a dendritic cell-targeted vaccine) encoding a consensus sequence of E2CHIKV and a recombinant protein (E2*CHIKV). Mice were immunized with different homologous and heterologous DNAprime-E2* protein boost strategies, and the specific humoral and cellular immune responses were accessed. We found that mice immunized with heterologous non-targeted DNA prime- E2*CHIKV protein boost developed high levels of neutralizing antibodies, as well as specific IFN-γ producing cells and polyfunctional CD4+ and CD8+ T cells. We also identified 14 potential epitopes along the E2CHIKV protein. Furthermore, immunization with recombinant E2*CHIKV combined with the adjuvant AS03 presented the highest humoral response with neutralizing capacity. Finally, we show that the heterologous prime-boost strategy with the non-targeted pVAX-E2 DNA vaccine as the prime followed by E2* protein + AS03 boost is a promising combination to elicit a broad humoral and cellular immune response. Together, our data highlights the importance of E2CHIKV for the development of a CHIKV vaccine.


Assuntos
Vírus Chikungunya , Vacinas de DNA , Vacinas Virais , Animais , Camundongos , Vírus Chikungunya/genética , Anticorpos Neutralizantes , Linfócitos T CD8-Positivos , Anticorpos Antivirais , Imunidade Celular , DNA
3.
iScience ; 25(1): 103610, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35005554

RESUMO

Thousands of biomedical scientific articles, including those describing genes associated with human diseases, are published every week. Computational methods such as text mining and machine learning algorithms are now able to automatically detect these associations. In this study, we used a cognitive computing text-mining application to construct a knowledge network comprising 3,723 genes and 99 diseases. We then tracked the yearly changes on these networks to analyze how our knowledge has evolved in the past 30 years. Our systems approach helped to unravel the molecular bases of diseases and detect shared mechanisms between clinically distinct diseases. It also revealed that multi-purpose therapeutic drugs target genes that are commonly associated with several psychiatric, inflammatory, or infectious disorders. By navigating this knowledge tsunami, we were able to extract relevant biological information and insights about human diseases.

4.
Essays Biochem ; 65(4): 657-669, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34528687

RESUMO

The immune system responds to infection or vaccination through a dynamic and complex process that involves several molecular and cellular factors. Among these factors, long non-coding RNAs (lncRNAs) have emerged as significant players in all areas of biology, particularly in immunology. Most of the mammalian genome is transcribed in a highly regulated manner, generating a diversity of lncRNAs that impact the differentiation and activation of immune cells and affect innate and adaptive immunity. Here, we have reviewed the range of functions and mechanisms of lncRNAs in response to infectious disease, including pathogen recognition, interferon (IFN) response, and inflammation. We describe examples of lncRNAs exploited by pathogenic agents during infection, which indicate that lncRNAs are a fundamental part of the arms race between hosts and pathogens. We also discuss lncRNAs potentially implicated in vaccine-induced immunity and present examples of lncRNAs associated with the antibody response of subjects receiving Influenza or Yellow Fever vaccines. Elucidating the widespread involvement of lncRNAs in the immune system will improve our understanding of the factors affecting immune response to different pathogenic agents, to better prevent and treat disease.


Assuntos
RNA Longo não Codificante , Vacinas , Imunidade Adaptativa/genética , Animais , Diferenciação Celular , Humanos , Mamíferos/genética , RNA Longo não Codificante/genética
5.
Clin Nutr ESPEN ; 44: 475-478, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34330510

RESUMO

BACKGROUND & AIMS: Obesity is associated with low grade systemic inflammation and insulin resistance. Although metabolic and immunological changes may contribute to the increased risk for COVID-19 mortality in obese, little is known about the impact of obesity in the lungs of patients with COVID-19. METHODS: We analyzed gene expression profiles of autopsy lungs of a cohort of 14 COVID-19 patients and 4 control individuals. Patients were divided into 3 groups according to their comorbidities: hypertension, type 2 diabetes (T2D) and obesity. We then identified the molecular alterations associated with these comorbidities in COVID-19 patients. RESULTS: Patients with only hypertension showed higher levels of inflammatory genes and B-cell related genes when compared to those with T2D and obesity. However, the levels of IFN-gamma, IL22, and CD274 (a ligand that binds to receptor PD1) were higher in COVID-19 patients with T2D and obesity. Several metabolic- and immune-associated genes such as G6PD, LCK and IL10 were significantly induced in the lungs of the obese group. CONCLUSION: Our findings suggest that SARS-CoV-2 infection in the lungs may exacerbate the immune response and chronic condition in obese COVID-19 patients.


Assuntos
COVID-19/complicações , COVID-19/genética , Expressão Gênica/genética , Pulmão/imunologia , Obesidade/complicações , Obesidade/genética , Autopsia , COVID-19/imunologia , Estudos de Coortes , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/imunologia , Humanos , Hipertensão/complicações , Hipertensão/genética , Hipertensão/imunologia , Obesidade/imunologia , SARS-CoV-2
6.
Semin Immunol ; 50: 101420, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-33162295

RESUMO

The structure and function of the immune system is governed by complex networks of interactions between cells and molecular components. Vaccination perturbs these networks, triggering specific pathways to induce cellular and humoral immunity. Systems vaccinology studies have generated vast data sets describing the genes related to vaccination, motivating the use of new approaches to identify patterns within the data. Here, we describe a framework called Network Vaccinology to explore the structure and function of biological networks responsible for vaccine-induced immunity. We demonstrate how the principles of graph theory can be used to identify modules of genes, proteins, and metabolites that are associated with innate and adaptive immune responses. Network vaccinology can be used to assess specific and shared molecular mechanisms of different types of vaccines, adjuvants, and routes of administration to direct rational design of the next generation of vaccines.


Assuntos
Vacinas/imunologia , Vacinologia/tendências , Animais , Redes Reguladoras de Genes , Humanos , Imunidade Celular , Imunidade Humoral , Biologia de Sistemas , Vacinação
7.
Sci Signal ; 13(635)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518143

RESUMO

Zika virus (ZIKV) infection during pregnancy can cause a set of severe abnormalities in the fetus known as congenital Zika syndrome (CZS). Experiments with animal models and in vitro systems have substantially contributed to our understanding of the pathophysiology of ZIKV infection. Here, to investigate the molecular basis of CZS in humans, we used a systems biology approach to integrate transcriptomic, proteomic, and genomic data from the postmortem brains of neonates with CZS. We observed that collagens were greatly reduced in expression in CZS brains at both the RNA and protein levels and that neonates with CZS had several single-nucleotide polymorphisms in collagen-encoding genes that are associated with osteogenesis imperfecta and arthrogryposis. These findings were validated by immunohistochemistry and comparative analysis of collagen abundance in ZIKV-infected and uninfected samples. In addition, we showed a ZIKV-dependent increase in the expression of cell adhesion factors that are essential for neurite outgrowth and axon guidance, findings that are consistent with the neuronal migration defects observed in CZS. Together, these findings provide insights into the underlying molecular alterations in the ZIKV-infected brain and reveal host genes associated with CZS susceptibility.


Assuntos
Encéfalo , Colágeno , Matriz Extracelular , Polimorfismo de Nucleotídeo Único , Infecção por Zika virus , Zika virus , Encéfalo/metabolismo , Encéfalo/patologia , Colágeno/genética , Colágeno/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Humanos , Recém-Nascido , Masculino , Síndrome , Infecção por Zika virus/congênito , Infecção por Zika virus/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia
8.
Transl Psychiatry ; 10(1): 141, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398742

RESUMO

Psychiatric and neurological disorders (PNDs) affect millions worldwide and only a few drugs achieve complete therapeutic success in the treatment of these disorders. Due to the high cost of developing novel drugs, drug repositioning represents a promising alternative method of treatment. In this manuscript, we used a network medicine approach to investigate the molecular characteristics of PNDs and identify novel drug candidates for repositioning. Using IBM Watson for Drug Discovery, a powerful machine learning text-mining application, we built knowledge networks containing connections between PNDs and genes or drugs mentioned in the scientific literature published in the past 50 years. This approach revealed several drugs that target key PND-related genes, which have never been used to treat these disorders to date. We validate our framework by detecting drugs that have been undergoing clinical trial for treating some of the PNDs, but have no published results in their support. Our data provides comprehensive insights into the molecular pathology of PNDs and offers promising drug repositioning candidates for follow-up trials.


Assuntos
Reposicionamento de Medicamentos , Doenças do Sistema Nervoso , Biologia Computacional , Mineração de Dados , Humanos , Aprendizado de Máquina , Doenças do Sistema Nervoso/tratamento farmacológico
9.
Environ Pollut ; 257: 113554, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31767231

RESUMO

The influenza is a common viral infection that can be fatal, especially in high-risk groups such as children, pregnant women, elderly, and immune-deficient individuals. Vaccination is the most efficient approach to prevent the spreading of viral infection and promote individual and public health. In contrast, exposure to environmental pollutants such as cigarette smoke reduces the efficacy of vaccination. We investigated whether chronic exposure to hydroquinone (HQ), the most abundant compound of the tobacco particulate phase, could impair the adaptive immune responses elicited by influenza vaccination. For this, adult male C57BL/6 mice were daily exposed to either nebulized HQ or PBS for 1 h for a total of eight weeks. At weeks 6 and 8, the mice were primed and boosted with the trivalent influenza vaccine via IM respectively. Although the HQ exposure did not alter the body weight of the mice and the biochemical and hematological parameters, the pollutant increased the oxidative stress in splenocytes of immunized animals, modified the morphology of spleen follicles, and augmented the size of their lymph nodes. The lymphoid organs of HQ-exposed mice presented a similar number of vaccine-specific IgG-secreting cells, titers of vaccine-specific total IgG, and respective subclasses. Transcriptome studies with HQ, benzene, or cigarette smoke exposure were also analyzed. The genes up-regulated upon pollutant exposure were associated with neutrophil migration and were shown to be co-expressed with antibody-secreting cell genes. Therefore, these findings suggest that HQ exposure may trigger an immune-compensatory mechanism that enhances the humoral responses induced by influenza vaccination.


Assuntos
Hidroquinonas/toxicidade , Imunidade Humoral/efeitos dos fármacos , Vacinas contra Influenza , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nicotiana
10.
Sci Signal, v. 13, n. 635, eaay6736, jun. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3067

RESUMO

Zika virus (ZIKV) infection during pregnancy can cause a set of severe abnormalities in the fetus known as congenital Zika syndrome (CZS). Experiments with animal models and in vitro systems have substantially contributed to our understanding of the pathophysiology of ZIKV infection. Here, to investigate the molecular basis of CZS in humans, we used a systems biology approach to integrate transcriptomic, proteomic, and genomic data from the postmortem brains of neonates with CZS. We observed that collagens were greatly reduced in expression in CZS brains at both the RNA and protein levels and that neonates with CZS had several single-nucleotide polymorphisms in collagen-encoding genes that are associated with osteogenesis imperfecta and arthrogryposis. These findings were validated by immunohistochemistry and comparative analysis of collagen abundance in ZIKV-infected and uninfected samples. In addition, we showed a ZIKV-dependent increase in the expression of cell adhesion factors that are essential for neurite outgrowth and axon guidance, findings that are consistent with the neuronal migration defects observed in CZS. Together, these findings provide insights into the underlying molecular alterations in the ZIKV-infected brain and reveal host genes associated with CZS susceptibility.

11.
Environ Pollut, v. 257, 113554, fev. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2973

RESUMO

The influenza is a common viral infection that can be fatal, especially in high-risk groups such as children, pregnant women, elderly, and immune-deficient individuals. Vaccination is the most efficient approach to prevent the spreading of viral infection and promote individual and public health. In contrast, exposure to environmental pollutants such as cigarette smoke reduces the efficacy of vaccination. We investigated whether chronic exposure to hydroquinone (HQ), the most abundant compound of the tobacco particulate phase, could impair the adaptive immune responses elicited by influenza vaccination. For this, adult male C57BL/6 mice were daily exposed to either nebulized HQ or PBS for 1 h for a total of eight weeks. At weeks 6 and 8, the mice were primed and boosted with the trivalent influenza vaccine via IM respectively. Although the HQ exposure did not alter the body weight of the mice and the biochemical and hematological parameters, the pollutant increased the oxidative stress in splenocytes of immunized animals, modified the morphology of spleen follicles, and augmented the size of their lymph nodes. The lymphoid organs of HQ-exposed mice presented a similar number of vaccine-specific IgG-secreting cells, titers of vaccine-specific total IgG, and respective subclasses. Transcriptome studies with HQ, benzene, or cigarette smoke exposure were also analyzed. The genes up-regulated upon pollutant exposure were associated with neutrophil migration and were shown to be co-expressed with antibody-secreting cell genes. Therefore, these findings suggest that HQ exposure may trigger an immune-compensatory mechanism that enhances the humoral responses induced by influenza vaccination.

12.
Sci. Signal. ; 13(635): eaay6736, 2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17730

RESUMO

Zika virus (ZIKV) infection during pregnancy can cause a set of severe abnormalities in the fetus known as congenital Zika syndrome (CZS). Experiments with animal models and in vitro systems have substantially contributed to our understanding of the pathophysiology of ZIKV infection. Here, to investigate the molecular basis of CZS in humans, we used a systems biology approach to integrate transcriptomic, proteomic, and genomic data from the postmortem brains of neonates with CZS. We observed that collagens were greatly reduced in expression in CZS brains at both the RNA and protein levels and that neonates with CZS had several single-nucleotide polymorphisms in collagen-encoding genes that are associated with osteogenesis imperfecta and arthrogryposis. These findings were validated by immunohistochemistry and comparative analysis of collagen abundance in ZIKV-infected and uninfected samples. In addition, we showed a ZIKV-dependent increase in the expression of cell adhesion factors that are essential for neurite outgrowth and axon guidance, findings that are consistent with the neuronal migration defects observed in CZS. Together, these findings provide insights into the underlying molecular alterations in the ZIKV-infected brain and reveal host genes associated with CZS susceptibility.

13.
Environ. Pollut. ; 257: 113554, 2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17536

RESUMO

The influenza is a common viral infection that can be fatal, especially in high-risk groups such as children, pregnant women, elderly, and immune-deficient individuals. Vaccination is the most efficient approach to prevent the spreading of viral infection and promote individual and public health. In contrast, exposure to environmental pollutants such as cigarette smoke reduces the efficacy of vaccination. We investigated whether chronic exposure to hydroquinone (HQ), the most abundant compound of the tobacco particulate phase, could impair the adaptive immune responses elicited by influenza vaccination. For this, adult male C57BL/6 mice were daily exposed to either nebulized HQ or PBS for 1 h for a total of eight weeks. At weeks 6 and 8, the mice were primed and boosted with the trivalent influenza vaccine via IM respectively. Although the HQ exposure did not alter the body weight of the mice and the biochemical and hematological parameters, the pollutant increased the oxidative stress in splenocytes of immunized animals, modified the morphology of spleen follicles, and augmented the size of their lymph nodes. The lymphoid organs of HQ-exposed mice presented a similar number of vaccine-specific IgG-secreting cells, titers of vaccine-specific total IgG, and respective subclasses. Transcriptome studies with HQ, benzene, or cigarette smoke exposure were also analyzed. The genes up-regulated upon pollutant exposure were associated with neutrophil migration and were shown to be co-expressed with antibody-secreting cell genes. Therefore, these findings suggest that HQ exposure may trigger an immune-compensatory mechanism that enhances the humoral responses induced by influenza vaccination.

14.
Front Psychiatry ; 6: 163, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635638

RESUMO

Attention-deficit hyperactivity disorder (ADHD) is a complex neurodevelopmental disorder that implies several-step process, and there is no single test to diagnose both ADHD and associated comorbidities, such as oppositional-defiant disorder (ODD), anxiety disorder, depression, and certain types of learning disabilities. The purpose of the present study was to examine correlations between behavioral and clinical symptoms by administering an extensive neuropsychological battery to a sample of children and adolescents from a developing country. The sample was divided into three groups: non-ADHD, ADHD-non-comorbid, and ADHD + comorbidity. A full neuropsychological battery and clinical assessment found that 105 children met DSM-5 criteria, of whom 46.6% had the predominantly inattentive presentation, 37.3% had combined presentation, and 16% were predominantly hyperactive/impulsive presentation. The internal correlation between neuropsychological tests did not reach statistical significance in the comparison between ADHD and non-ADHD cases (p < 0.17). Clinical ADHD cases, including both + comorbidity and non-comorbid groups, performed substantially worse on continuous performance test (CPT), working memory. Comparing ADHD-non-comorbid and ADHD + comorbidity groups, the latter did significantly worse on inhibitory control, time processing, and the level of perseveration response on CPT indexes, as well as on working memory performance and child behavior checklist (CBCL) tests particularly the CBCL-deficient emotional self-regulation test in the ADHD + comorbidity group. Children diagnosed as ODD or with conduct disorder showed close correlations between clinical CBCL profiles and externalized symptoms. Our findings suggest that ADHD + comorbidity and ADHD non-comorbid cases may be differentiated by a number of neuropsychological measures, such as processing speed, inhibitory control, and working memory, that may reflect different levels of involvement of the hot and cool executive domains, which are more impaired in cases of severe symptomatic-externalized behavior and emotional regulation problems. Therefore, profiles based on clinical and behavioral findings can help clinicians select better strategies for detecting neuropsychological impairment in Brazilian children with ADHD.

15.
Front Psychiatry ; 6: 126, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441687

RESUMO

Attention deficit hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder characterized by a definite behavioral pattern that might lead to performance problems in the social, educational, or work environments. In the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, the symptoms of ADHD were restricted to those associated with cognitive (attention deficit) and behavioral (hyperactivity/impulsivity) deficits, while deficient emotional self-regulation, a relevant source of morbidity, was left out. The etiology of it is complex, as its exact causes have not yet been fully elucidated. ADHD seems to arise from a combination of various genetic and environmental factors that alter the developing brain, resulting in structural and functional abnormalities. The aim of this paper was to review epigenetics and ADHD focused on how multidimensional mechanisms influence the behavioral phenotype.

16.
Braz. j. microbiol ; 44(4): 1007-1034, Oct.-Dec. 2013. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-705250

RESUMO

The discovery of secondary metabolites produced by microorganisms (e.g., penicillin in 1928) and the beginning of their industrial application (1940) opened new doors to what has been the main medication source for the treatment of infectious diseases and tumors. In fact, approximately 80 years after the discovery of the first antibiotic compound, and despite all of the warnings about the failure of the "goose that laid the golden egg," the potential of this wealth is still inexorable: simply adjust the focus from "micro" to "nano", that means changing the look from microorganisms to nanograms of DNA. Then, the search for new drugs, driven by genetic engineering combined with metagenomic strategies, shows us a way to bypass the barriers imposed by methodologies limited to isolation and culturing. However, we are far from solving the problem of supplying new molecules that are effective against the plasticity of multi- or pan-drug-resistant pathogens. Although the first advances in genetic engineering date back to 1990, there is still a lack of high-throughput methods to speed up the screening of new genes and design new molecules by recombination of pathways. In addition, it is necessary an increase in the variety of heterologous hosts and improvements throughout the full drug discovery pipeline. Among numerous studies focused on this subject, those on polyketide antibiotics stand out for the large technical-scientific efforts that established novel solutions for the transfer/engineering of major metabolic pathways using transposons and other episomes, overcoming one of the main methodological constraints for the heterologous expression of major pathways. In silico prediction analysis of three-dimensional enzymatic structures and advances in sequencing technologies have expanded access to the metabolic potential of microorganisms.


Assuntos
Animais , Humanos , Antibacterianos/metabolismo , Vias Biossintéticas/genética , Biotecnologia/métodos , Descoberta de Drogas/métodos , Metagenômica/métodos , Policetídeos/metabolismo , Antibacterianos/isolamento & purificação , Biotecnologia/tendências , Descoberta de Drogas/tendências , Engenharia Metabólica/métodos , Engenharia Metabólica/tendências , Metagenômica/tendências , Policetídeos/isolamento & purificação , Metabolismo Secundário
17.
Braz J Microbiol ; 44(4): 1007-34, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24688489

RESUMO

The discovery of secondary metabolites produced by microorganisms (e.g., penicillin in 1928) and the beginning of their industrial application (1940) opened new doors to what has been the main medication source for the treatment of infectious diseases and tumors. In fact, approximately 80 years after the discovery of the first antibiotic compound, and despite all of the warnings about the failure of the "goose that laid the golden egg," the potential of this wealth is still inexorable: simply adjust the focus from "micro" to "nano", that means changing the look from microorganisms to nanograms of DNA. Then, the search for new drugs, driven by genetic engineering combined with metagenomic strategies, shows us a way to bypass the barriers imposed by methodologies limited to isolation and culturing. However, we are far from solving the problem of supplying new molecules that are effective against the plasticity of multi- or pan-drug-resistant pathogens. Although the first advances in genetic engineering date back to 1990, there is still a lack of high-throughput methods to speed up the screening of new genes and design new molecules by recombination of pathways. In addition, it is necessary an increase in the variety of heterologous hosts and improvements throughout the full drug discovery pipeline. Among numerous studies focused on this subject, those on polyketide antibiotics stand out for the large technical-scientific efforts that established novel solutions for the transfer/engineering of major metabolic pathways using transposons and other episomes, overcoming one of the main methodological constraints for the heterologous expression of major pathways. In silico prediction analysis of three-dimensional enzymatic structures and advances in sequencing technologies have expanded access to the metabolic potential of microorganisms.


Assuntos
Antibacterianos/metabolismo , Vias Biossintéticas/genética , Biotecnologia/métodos , Descoberta de Drogas/métodos , Metagenômica/métodos , Policetídeos/metabolismo , Animais , Antibacterianos/isolamento & purificação , Biotecnologia/tendências , Descoberta de Drogas/tendências , Humanos , Engenharia Metabólica/métodos , Engenharia Metabólica/tendências , Metagenômica/tendências , Policetídeos/isolamento & purificação , Metabolismo Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...