Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 20293, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645873

RESUMO

Cryptochromes (CRY) are highly conserved signalling molecules that regulate circadian rhythms and are candidate radical pair based magnetoreceptors. Birds have at least four cryptochromes (CRY1a, CRY1b, CRY2, and CRY4), but few studies have interrogated their function. Here we investigate the expression, localisation and interactome of clCRY2 in the pigeon retina. We report that clCRY2 has two distinct transcript variants, clCRY2a, and a previously unreported splice isoform, clCRY2b which is larger in size. We show that clCRY2a mRNA is expressed in all retinal layers and clCRY2b is enriched in the inner and outer nuclear layer. To define the localisation and interaction network of clCRY2 we generated and validated a monoclonal antibody that detects both clCRY2 isoforms. Immunohistochemical studies revealed that clCRY2a/b is present in all retinal layers and is enriched in the outer limiting membrane and outer plexiform layer. Proteomic analysis showed clCRY2a/b interacts with typical circadian molecules (PER2, CLOCK, ARTNL), cell junction proteins (CTNNA1, CTNNA2) and components associated with the microtubule motor dynein (DYNC1LI2, DCTN1, DCTN2, DCTN3) within the retina. Collectively these data show that clCRY2 is a component of the avian circadian clock and unexpectedly associates with the microtubule cytoskeleton.


Assuntos
Criptocromos/metabolismo , Microtúbulos/metabolismo , Retina/metabolismo , Processamento Alternativo , Animais , Relógios Circadianos , Ritmo Circadiano/fisiologia , Clonagem Molecular , Columbidae/metabolismo , Variação Genética , Junções Intercelulares , Espectrometria de Massas , Isoformas de Proteínas , Proteômica/métodos , Retina/patologia
2.
Sci Adv ; 6(33): eabb9110, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32851187

RESUMO

The biophysical and molecular mechanisms that enable animals to detect magnetic fields are unknown. It has been proposed that birds have a light-dependent magnetic compass that relies on the formation of radical pairs within cryptochrome molecules. Using spectroscopic methods, we show that pigeon cryptochrome clCRY4 is photoreduced efficiently and forms long-lived spin-correlated radical pairs via a tetrad of tryptophan residues. We report that clCRY4 is broadly and stably expressed within the retina but enriched at synapses in the outer plexiform layer in a repetitive manner. A proteomic survey for retinal-specific clCRY4 interactors identified molecules that are involved in receptor signaling, including glutamate receptor-interacting protein 2, which colocalizes with clCRY4. Our data support a model whereby clCRY4 acts as an ultraviolet-blue photoreceptor and/or a light-dependent magnetosensor by modulating glutamatergic synapses between horizontal cells and cones.

3.
Sci Rep ; 10(1): 915, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969617

RESUMO

The transcription factor ZENK is an immediate early gene that has been employed as a surrogate marker to map neuronal activity in the brain. It has been used in a wide variety of species, however, commercially available antibodies have limited immunoreactivity in birds. To address this issue we generated a new mouse monoclonal antibody, 7B7-A3, raised against ZENK from the rock pigeon (Columba livia). We show that 7B7-A3 labels clZENK in both immunoblots and histological stainings with high sensitivity and selectivity for its target. Using a sound stimulation paradigm we demonstrate that 7B7-A3 can detect activity-dependent ZENK expression at key stations of the central auditory pathway of the pigeon. Finally, we compare staining efficiency across three avian species and confirm that 7B7-A3 is compatible with immunohistochemical detection of ZENK in the rock pigeon, zebra finch, and domestic chicken. Taken together, 7B7-A3 represents a useful tool for the avian neuroscience community to map functional activity in the brain.


Assuntos
Anticorpos Monoclonais Murinos , Vias Auditivas/fisiologia , Aves/imunologia , Aves/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Proteína 1 de Resposta de Crescimento Precoce/imunologia , Neurônios/fisiologia , Animais , Anticorpos Monoclonais Murinos/metabolismo , Columbidae , Camundongos
4.
Sci Signal ; 11(512)2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317521

RESUMO

Cancer cells increase glucose metabolism to support aerobic glycolysis. However, only some cancer cells are acutely sensitive to glucose withdrawal, and the underlying mechanism of this selective sensitivity is unclear. We showed that glucose deprivation initiates a cell death pathway in cancer cells that is dependent on the kinase RIPK1. Glucose withdrawal triggered rapid plasma membrane depolarization and an influx of extracellular calcium into the cell through the L-type calcium channel Cav1.3 (CACNA1D), followed by activation of the kinase CAMK1. CAMK1 and the demethylase PPME1 were required for the subsequent demethylation and inactivation of the catalytic subunit of the phosphatase PP2A (PP2Ac) and the phosphorylation of RIPK1. Plasma membrane depolarization, PP2Ac demethylation, and cell death were prevented by glucose and, unexpectedly, by its nonmetabolizable analog 2-deoxy-d-glucose (2-DG), a glycolytic inhibitor. These findings reveal a previously unknown function of glucose as a signaling molecule that protects cells from death induced by plasma membrane depolarization, independently of its role in glycolysis. Components of this cancer cell death pathway represent potential therapeutic targets against cancer.


Assuntos
Cálcio/metabolismo , Morte Celular , Desmetilação , Glucose/metabolismo , Glicólise , Neoplasias/patologia , Proteína Fosfatase 2/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Humanos , Neoplasias/metabolismo , Fosforilação , Proteína Fosfatase 2/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
5.
J Neurochem ; 101(4): 959-71, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17394530

RESUMO

Carboxymethylation and phosphorylation of protein phosphatase 2A (PP2A) catalytic C subunit are evolutionary conserved mechanisms that critically control PP2A holoenzyme assembly and substrate specificity. Down-regulation of PP2A methylation and PP2A enzymes containing the B alpha regulatory subunit occur in Alzheimer's disease. In this study, we show that expressed wild-type and methylation- (L309 Delta) and phosphorylation- (T304D, T304A, Y307F, and Y307E) site mutants of PP2A C subunit differentially bind to B, B', and B''-type regulatory subunits in NIH 3T3 fibroblasts and neuro-2a (N2a) neuroblastoma cells. They also display distinct binding affinity for microtubules (MTs). Relative to controls, expression of the wild-type, T304A and Y307F C subunits in N2a cells promotes the accumulation of acetylated and detyrosinated MTs. However, expression of the Y307E, L309 Delta, and T304D mutants, which are impaired in their ability to associate with the B alpha subunit, induces their loss. Silencing of B alpha subunit in N2a and NIH 3T3 cells is sufficient to induce a similar breakdown of acetylated and detyrosinated MTs. It also confers increased sensitivity to nocodazole-induced MT depolymerization. Our findings suggest that changes in intracellular PP2A subunit composition can modulate MT dynamics. They support the hypothesis that reduced amounts of neuronal B alpha-containing PP2A heterotrimers contribute to MT destabilization in Alzheimer's disease.


Assuntos
Regulação da Expressão Gênica/genética , Microtúbulos/metabolismo , Mutação/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Acetilação , Animais , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Neuroblastoma , Ácido Okadáico/farmacologia , Fosfoproteínas Fosfatases/genética , Proteína Fosfatase 2 , Interferência de RNA/fisiologia , Transfecção/métodos , Tirosina/metabolismo
6.
Exp Cell Res ; 298(2): 661-73, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15265711

RESUMO

BRCA1 is involved in maintaining genomic integrity and, as a regulator of the G2/M checkpoint, contributes to DNA repair and cell survival. The overexpression of BRCA1 elicits diverse cellular responses including apoptosis due to the stimulation of specific signaling pathways. BRCA1 is normally regulated by protein turnover, but is stabilized by BARD1 which can recruit BRCA1 to the nucleus to form a ubiquitin E3 ligase complex involved in DNA repair or cell survival. Here, we identify BARD1 as a regulator of BRCA1-dependent apoptosis. Using transfected MCF-7 breast cancer cells, we found that BRCA1-induced apoptosis was independent of p53 and was stimulated by BRCA1 nuclear export. Conversely, BARD1 reduced BRCA1-dependent apoptosis by a mechanism involving nuclear sequestration. Regulation of apoptosis by BARD1 was reduced by BRCA1 cancer mutations that disrupt Ub ligase function. Transfection of BRCA1 N-terminal peptides that disrupted the cellular BRCA1-BARD1 interaction caused a loss of nuclear BRCA1 that correlated with increased apoptosis in single cell assays, but did not alter localization or expression of endogenous BARD1. Reducing BARD1 levels by siRNA caused a small increase in apoptosis. Our findings identify a novel apoptosis inhibitory function of BARD1 and suggest that nuclear retention of BRCA1-BARD1 complexes contributes to both DNA repair and cell survival.


Assuntos
Apoptose/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/metabolismo , Carcinoma/metabolismo , Núcleo Celular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Transporte Ativo do Núcleo Celular/genética , Proteína BRCA1/genética , Neoplasias da Mama/genética , Carcinoma/genética , Linhagem Celular Tumoral , Núcleo Celular/genética , Sobrevivência Celular/genética , Reparo do DNA/genética , Regulação para Baixo/genética , Humanos , Substâncias Macromoleculares , Mutação/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética
7.
J Biol Chem ; 277(27): 24258-64, 2002 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-11986304

RESUMO

The oncogenic protein beta-catenin is overexpressed in many cancers, frequently accumulating in nuclei where it forms active complexes with lymphoid enhancer factor-1 (LEF-1)/T-cell transcription factors, inducing genes such as c-myc and cyclin D1. In normal cells, nuclear beta-catenin levels are controlled by the adenomatous polyposis coli (APC) protein through nuclear export and cytoplasmic degradation. Transient expression of LEF-1 is known to increase nuclear beta-catenin levels by an unknown mechanism. Here, we show that APC and LEF-1 compete for nuclear beta-catenin with opposing consequences. APC can export nuclear beta-catenin to the cytoplasm for degradation. In contrast, LEF-1 anchors beta-catenin in the nucleus by blocking APC-mediated nuclear export. LEF-1 also prevented the APC/CRM1-independent nuclear export of beta-catenin as revealed by in vitro assays. Importantly, LEF-1-bound beta-catenin was protected from degradation by APC and axin in SW480 colon cancer cells. The ability of LEF-1 to trap beta-catenin in the nucleus was down-regulated by histone deacetylase 1, and this correlated with a decrease in LEF1 transcription activity. Our findings identify LEF-1 as key regulator of beta-catenin nuclear localization and stability and suggest that overexpression of LEF-1 in colon cancer and melanoma cells may contribute to the accumulation of oncogenic beta-catenin in the nucleus.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histona Desacetilases/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Células 3T3 , Transporte Ativo do Núcleo Celular , Animais , Caderinas/metabolismo , Neoplasias do Colo , Proteínas do Citoesqueleto/genética , Primers do DNA , Genes Reporter , Vetores Genéticos , Humanos , Cinética , Luciferases/genética , Fator 1 de Ligação ao Facilitador Linfoide , Camundongos , Proteínas Recombinantes/metabolismo , Linfócitos T/metabolismo , Transativadores/genética , Transfecção , Células Tumorais Cultivadas , beta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...