Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nat Methods ; 20(7): 1037-1047, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37336949

RESUMO

Technology for measuring 3D genome topology is increasingly important for studying gene regulation, for genome assembly and for mapping of genome rearrangements. Hi-C and other ligation-based methods have become routine but have specific biases. Here, we develop multiplex-GAM, a faster and more affordable version of genome architecture mapping (GAM), a ligation-free technique that maps chromatin contacts genome-wide. We perform a detailed comparison of multiplex-GAM and Hi-C using mouse embryonic stem cells. When examining the strongest contacts detected by either method, we find that only one-third of these are shared. The strongest contacts specifically found in GAM often involve 'active' regions, including many transcribed genes and super-enhancers, whereas in Hi-C they more often contain 'inactive' regions. Our work shows that active genomic regions are involved in extensive complex contacts that are currently underestimated in ligation-based approaches, and highlights the need for orthogonal advances in genome-wide contact mapping technologies.


Assuntos
Cromatina , Genoma , Animais , Camundongos , Cromatina/genética , Mapeamento Cromossômico/métodos , Cromossomos , Genômica/métodos
2.
Hum Mol Genet ; 31(9): 1357-1369, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34740236

RESUMO

Nephronophthisis-related ciliopathies (NPHP-RC) comprises a group of inherited kidney diseases, caused by mutations in genes encoding proteins localizing to primary cilia. NPHP-RC represents one of the most frequent monogenic causes of renal failure within the first three decades of life, but its molecular disease mechanisms remain unclear. Here, we identified biallelic ANKS6 mutations in two affected siblings with late-onset chronic kidney disease by whole-exome sequencing. We employed patient-derived fibroblasts generating an in vitro model to study the precise biological impact of distinct human ANKS6 mutations, completed by immunohistochemistry studies on renal biopsy samples. Functional studies using patient-derived cells showed an impaired integrity of the ciliary inversin compartment with reduced cilia length. Further analyses demonstrated that ANKS6 deficiency leads to a dysregulation of Hippo-signaling through nuclear yes-associated protein (YAP) imbalance and disrupted ciliary localization of YAP. In addition, an altered transcriptional activity of canonical Wnt target genes and altered expression of non-phosphorylated (active) ß-catenin and phosphorylated glycogen synthase kinase 3ß were observed. Upon ciliation, ANKS6 deficiency revealed a deranged subcellular localization and expression of components of the endocytic recycling compartment. Our results demonstrate that ANKS6 plays a key role in regulating the Hippo pathway, and ANKS6 deficiency is linked to dysregulation of signaling pathways. Our study provides molecular clues in understanding pathophysiological mechanisms of NPHP-RC and may offer new therapeutic targets.


Assuntos
Ciliopatias , Doenças Renais Císticas , Doenças Renais Policísticas , Insuficiência Renal Crônica , Cílios/patologia , Ciliopatias/metabolismo , Feminino , Humanos , Doenças Renais Císticas/metabolismo , Masculino , Mutação , Proteínas Nucleares , Doenças Renais Policísticas/genética
3.
Science ; 374(6573): eabk0410, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34882480

RESUMO

Cytokinetic membrane abscission is a spatially and temporally regulated process that requires ESCRT (endosomal sorting complexes required for transport)­dependent control of membrane remodeling at the midbody, a subcellular organelle that defines the cleavage site. Alteration of ESCRT function can lead to cataract, but the underlying mechanism and its relation to cytokinesis are unclear. We found a lens-specific cytokinetic process that required PI3K-C2α (phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2α), its lipid product PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate), and the PI(3,4)P2­binding ESCRT-II subunit VPS36 (vacuolar protein-sorting-associated protein 36). Loss of each of these components led to impaired cytokinesis, triggering premature senescence in the lens of fish, mice, and humans. Thus, an evolutionarily conserved pathway underlies the cell type­specific control of cytokinesis that helps to prevent early onset cataract by protecting from senescence.


Assuntos
Catarata/patologia , Senescência Celular , Citocinese , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Cristalino/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo , Senilidade Prematura , Animais , Evolução Biológica , Proteínas de Ligação ao Cálcio/metabolismo , Catarata/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Humanos , Cristalino/crescimento & desenvolvimento , Cristalino/metabolismo , Camundongos , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Tubulina (Proteína)/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830133

RESUMO

The primary cilium is found in most mammalian cells and plays a functional role in tissue homeostasis and organ development by modulating key signaling pathways. Ciliopathies are a group of genetically heterogeneous disorders resulting from defects in cilia development and function. Patients with ciliopathic disorders exhibit a range of phenotypes that include nephronophthisis (NPHP), a progressive tubulointerstitial kidney disease that commonly results in end-stage renal disease (ESRD). In recent years, distal appendages (DAPs), which radially project from the distal end of the mother centriole, have been shown to play a vital role in primary ciliary vesicle docking and the initiation of ciliogenesis. Mutations in the genes encoding these proteins can result in either a complete loss of the primary cilium, abnormal ciliary formation, or defective ciliary signaling. DAPs deficiency in humans or mice commonly results in NPHP. In this review, we outline recent advances in our understanding of the molecular functions of DAPs and how they participate in nephronophthisis development.


Assuntos
Centrossomo/metabolismo , Cílios/metabolismo , Doenças Renais Císticas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Corpos Basais/metabolismo , Membrana Celular/metabolismo , Centríolos/metabolismo , Vesículas Citoplasmáticas/metabolismo , Humanos , Doenças Renais Císticas/congênito , Modelos Biológicos
5.
Am J Transplant ; 20(5): 1410-1416, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31814324

RESUMO

In light of the organ shortage, there is a great responsibility to assess postmortal organs for which procurement has been consented and to increase the life span of transplanted organs. The former responsibility has moved many centers to accept extended criteria organs. The latter responsibility requires an exact diagnosis and, if possible, omission of the harmful influence on the transplant. We report the course of a kidney transplant that showed a steady decline of function over a decade, displaying numerous cysts of different sizes. Clinical workup excluded the most frequent causes of chronic transplant failure. The filed allocation documents mentioned the donor's disease of oral-facial-digital syndrome, a rare ciliopathy, which can also affect the kidney. Molecular diagnosis was performed by culturing donor tubular cells from the recipient´s urine more than 10 years after transplantation. Next-generation panel sequencing with DNA from tubular urinary cells revealed a novel truncating mutation in OFD1, which sufficiently explains the features of the kidney transplants, also found in the second kidney allograft. Despite this severe donor disease, lifesaving transplantation with good long-term outcome was enabled for 5 recipients.


Assuntos
Falência Renal Crônica , Transplante de Rim , Obtenção de Tecidos e Órgãos , Sobrevivência de Enxerto , Humanos , Rim , Falência Renal Crônica/cirurgia , Transplante de Rim/efeitos adversos , Complicações Pós-Operatórias , Doadores de Tecidos
6.
PLoS One ; 14(8): e0211175, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31412038

RESUMO

Olfactory and trigeminal chemosensory systems reside in parallel within the mammalian nose. Psychophysical studies in people indicate that these two systems interact at a perceptual level. Trigeminal sensations of pungency mask odour perception, while olfactory stimuli can influence trigeminal signal processing tasks such as odour localization. While imaging studies indicate overlap in limbic and cortical somatosensory areas activated by nasal trigeminal and olfactory stimuli, there is also potential cross-talk at the level of the olfactory epithelium, the olfactory bulb and trigeminal brainstem. Here we explored the influence of olfactory and trigeminal signaling in the nasal cavity. A forced choice water consumption paradigm was used to ascertain whether trigeminal and olfactory stimuli could influence behaviour in mice. Mice avoided water sources surrounded by both volatile TRPV1 (cyclohexanone) and TRPA1 (allyl isothiocyanate) irritants and the aversion to cyclohexanone was mitigated when combined with a pure odorant (rose fragrance, phenylethyl alcohol, PEA). To determine whether olfactory-trigeminal interactions within the nose could potentially account for this behavioural effect we recorded from single trigeminal sensory axons innervating the nasal respiratory and olfactory epithelium using an isolated in vitro preparation. To circumvent non-specific effects of chemical stimuli, optical stimulation was used to excite olfactory sensory neurons in mice expressing channel-rhodopsin (ChR2) under the olfactory marker protein (OMP) promoter. Photoactivation of olfactory sensory neurons produced no modulation of axonal action potential conduction in individual trigeminal axons. Similarly, no evidence was found for collateral branching of trigeminal axon that might serve as a conduit for cross-talk between the olfactory and respiratory epithelium and olfactory dura mater. Using direct assessment of action potential activity in trigeminal axons we observed neither paracrine nor axon reflex mediated cross-talk between olfactory and trigeminal sensory systems in the rodent nasal cavity. Our current results suggest that olfactory sensory neurons exert minimal influence on trigeminal signals within the nasal cavity.


Assuntos
Cavidade Nasal/inervação , Odorantes/análise , Condutos Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/fisiologia , Nervo Trigêmeo/fisiologia , Potenciais de Ação , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Receptores Olfatórios/efeitos da radiação , Nervo Trigêmeo/efeitos dos fármacos
7.
Kidney Int ; 96(2): 320-326, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31248650

RESUMO

Nephronophthisis is an autosomal recessive kidney disease with high genetic heterogeneity. Understanding the functions of the individual genes contributing to this disease is critical for delineating the pathomechanisms of this disorder. Here, we investigated kidney function of a novel gene associated with nephronophthisis, CEP164, coding a centriolar distal appendage protein, using a Cep164 knockout mouse model. Collecting duct-specific deletion of Cep164 abolished primary cilia from the collecting duct epithelium and led to rapid postnatal cyst growth in the kidneys. Cell cycle and biochemical studies revealed that tubular hyperproliferation is the primary mechanism that drives cystogenesis in the kidneys of these mice. Administration of roscovitine, a cell cycle inhibitor, blocked cyst growth in the cortical collecting ducts and preserved kidney parenchyma in Cep164 knockout mice. Thus, our findings provide evidence that therapeutic modulation of cell cycle activity can be an effective approach to prevent cyst progression in the kidney.


Assuntos
Ciliopatias/tratamento farmacológico , Doenças Renais Císticas/tratamento farmacológico , Túbulos Renais Coletores/efeitos dos fármacos , Proteínas dos Microtúbulos/deficiência , Inibidores de Proteínas Quinases/administração & dosagem , Roscovitina/administração & dosagem , Animais , Animais Recém-Nascidos , Ciclo Celular/efeitos dos fármacos , Cílios/patologia , Ciliopatias/genética , Ciliopatias/patologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Embrião de Mamíferos , Epitélio/efeitos dos fármacos , Epitélio/patologia , Feminino , Humanos , Doenças Renais Císticas/genética , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/crescimento & desenvolvimento , Túbulos Renais Coletores/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas dos Microtúbulos/genética , Compostos Organosselênicos , Estudo de Prova de Conceito
8.
PLoS Genet ; 15(4): e1008088, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31034465

RESUMO

PIK3C2A is a class II member of the phosphoinositide 3-kinase (PI3K) family that catalyzes the phosphorylation of phosphatidylinositol (PI) into PI(3)P and the phosphorylation of PI(4)P into PI(3,4)P2. At the cellular level, PIK3C2A is critical for the formation of cilia and for receptor mediated endocytosis, among other biological functions. We identified homozygous loss-of-function mutations in PIK3C2A in children from three independent consanguineous families with short stature, coarse facial features, cataracts with secondary glaucoma, multiple skeletal abnormalities, neurological manifestations, among other findings. Cellular studies of patient-derived fibroblasts found that they lacked PIK3C2A protein, had impaired cilia formation and function, and demonstrated reduced proliferative capacity. Collectively, the genetic and molecular data implicate mutations in PIK3C2A in a new Mendelian disorder of PI metabolism, thereby shedding light on the critical role of a class II PI3K in growth, vision, skeletal formation and neurological development. In particular, the considerable phenotypic overlap, yet distinct features, between this syndrome and Lowe's syndrome, which is caused by mutations in the PI-5-phosphatase OCRL, highlight the key role of PI metabolizing enzymes in specific developmental processes and demonstrate the unique non-redundant functions of each enzyme. This discovery expands what is known about disorders of PI metabolism and helps unravel the role of PIK3C2A and class II PI3Ks in health and disease.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Catarata/genética , Transtornos da Motilidade Ciliar/genética , Nanismo/genética , Mutação , Fosfatidilinositol 3-Quinases/genética , Adolescente , Adulto , Criança , Consanguinidade , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Linhagem , Fenótipo , Adulto Jovem
9.
J Am Soc Nephrol ; 30(3): 393-405, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30737270

RESUMO

BACKGROUND: Although studies have identified >55 genes as causing steroid-resistant nephrotic syndrome (SRNS) and localized its pathogenesis to glomerular podocytes, the disease mechanisms of SRNS remain largely enigmatic. We recently reported that individuals with mutations in COQ6, a coenzyme Q (also called CoQ10, CoQ, or ubiquinone) biosynthesis pathway enzyme, develop SRNS with sensorineural deafness, and demonstrated the beneficial effect of CoQ for maintenace of kidney function. METHODS: To study COQ6 function in podocytes, we generated a podocyte-specific Coq6 knockout mouse (Coq6podKO ) model and a transient siRNA-based COQ6 knockdown in a human podocyte cell line. Mice were monitored for development of proteinuria and assessed for development of glomerular sclerosis. Using a podocyte migration assay, we compared motility in COQ6 knockdown podocytes and control podocytes. We also randomly assigned 5-month-old Coq6podKO mice and controls to receive no treatment or 2,4-dihydroxybenzoic acid (2,4-diHB), an analog of a CoQ precursor molecule that is classified as a food additive by health authorities in Europe and the United States. RESULTS: Abrogation of Coq6 in mouse podocytes caused FSGS and proteinuria (>46-fold increases in albuminuria). In vitro studies revealed an impaired podocyte migration rate in COQ6 knockdown human podocytes. Treating Coq6podKO mice or cells with 2,4-diHB prevented renal dysfunction and reversed podocyte migration rate impairment. Survival of Coq6podKO mice given 2,4diHB was comparable to that of control mice and significantly higher than that of untreated Coq6podKO mice, half of which died by 10 months of age. CONCLUSIONS: These findings reveal a potential novel treatment strategy for those cases of human nephrotic syndrome that are caused by a primary dysfunction in the CoQ10 biosynthesis pathway.

10.
Am J Hum Genet ; 104(1): 45-54, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609407

RESUMO

Nephronophthisis-related ciliopathies (NPHP-RCs) are a group of inherited diseases that are associated with defects in primary cilium structure and function. To identify genes mutated in NPHP-RC, we performed homozygosity mapping and whole-exome sequencing for >100 individuals, some of whom were single affected individuals born to consanguineous parents and some of whom were siblings of indexes who were also affected by NPHP-RC. We then performed high-throughput exon sequencing in a worldwide cohort of 800 additional families affected by NPHP-RC. We identified two ADAMTS9 mutations (c.4575_4576del [p.Gln1525Hisfs∗60] and c.194C>G [p.Thr65Arg]) that appear to cause NPHP-RC. Although ADAMTS9 is known to be a secreted extracellular metalloproteinase, we found that ADAMTS9 localized near the basal bodies of primary cilia in the cytoplasm. Heterologously expressed wild-type ADAMTS9, in contrast to mutant proteins detected in individuals with NPHP-RC, localized to the vicinity of the basal body. Loss of ADAMTS9 resulted in shortened cilia and defective sonic hedgehog signaling. Knockout of Adamts9 in IMCD3 cells, followed by spheroid induction, resulted in defective lumen formation, which was rescued by an overexpression of wild-type, but not of mutant, ADAMTS9. Knockdown of adamts9 in zebrafish recapitulated NPHP-RC phenotypes, including renal cysts and hydrocephalus. These findings suggest that the identified mutations in ADAMTS9 cause NPHP-RC and that ADAMTS9 is required for the formation and function of primary cilia.


Assuntos
Proteína ADAMTS9/genética , Ciliopatias/genética , Mutação , Doenças Renais Policísticas/genética , Proteína ADAMTS9/metabolismo , Animais , Cílios/patologia , Ciliopatias/patologia , Feminino , Humanos , Masculino , Fenótipo , Doenças Renais Policísticas/patologia , Esferoides Celulares , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
J Am Soc Nephrol ; 29(9): 2298-2309, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30049680

RESUMO

BACKGROUND: Providing the correct diagnosis for patients with tubulointerstitial kidney disease and secondary degenerative disorders, such as hypertension, remains a challenge. The autosomal dominant tubulointerstitial kidney disease (ADTKD) subtype caused by MUC1 mutations (ADTKD-MUC1) is particularly difficult to diagnose, because the mutational hotspot is a complex repeat domain, inaccessible with routine sequencing techniques. Here, we further evaluated SNaPshot minisequencing as a technique for diagnosing ADTKD-MUC1 and assessed immunodetection of the disease-associated mucin 1 frameshift protein (MUC1-fs) as a nongenetic technique. METHODS: We re-evaluated detection of MUC1 mutations by targeted repeat enrichment and SNaPshot minisequencing by haplotype reconstruction via microsatellite analysis in three independent ADTKD-MUC1 families. Additionally, we generated rabbit polyclonal antibodies against MUC1-fs and evaluated immunodetection of wild-type and mutated allele products in human kidney biopsy specimens. RESULTS: The detection of MUC1 mutations by SNaPshot minisequencing was robust. Immunostaining with our MUC1-fs antibodies and an MUC1 antibody showed that both proteins are readily detectable in human ADTKD-MUC1 kidneys, with mucin 1 localized to the apical membrane and MUC1-fs abundantly distributed throughout the cytoplasm. Notably, immunohistochemical analysis of MUC1-fs expression in clinical kidney samples facilitated reliable prediction of the disease status of individual patients. CONCLUSIONS: Diagnosing ADTKD-MUC1 by molecular genetics is possible, but it is technically demanding and labor intensive. However, immunohistochemistry on kidney biopsy specimens is feasible for nongenetic diagnosis of ADTKD-MUC1 and therefore, a valid method to select families for further diagnostics. Our data are compatible with the hypothesis that specific molecular effects of MUC1-fs underlie the pathogenesis of this disease.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença/epidemiologia , Mucina-1/genética , Mutação/genética , Rim Policístico Autossômico Dominante/genética , Adulto , Alelos , Animais , Biópsia por Agulha , Estudos de Coortes , Feminino , Haplótipos , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Nefrite Intersticial/genética , Nefrite Intersticial/patologia , Linhagem , Rim Policístico Autossômico Dominante/patologia , Coelhos , Estudos Retrospectivos , Medição de Risco , Sensibilidade e Especificidade
12.
Hypertension ; 71(4): 691-699, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29483232

RESUMO

Midaortic syndrome (MAS) is a rare cause of severe childhood hypertension characterized by narrowing of the abdominal aorta in children and is associated with extensive vascular disease. It may occur as part of a genetic syndrome, such as neurofibromatosis, or as consequence of a pathological inflammatory disease. However, most cases are considered idiopathic. We hypothesized that in a high percentage of these patients, a monogenic cause of disease may be detected by evaluating whole exome sequencing data for mutations in 1 of 38 candidate genes previously described to cause vasculopathy. We studied a cohort of 36 individuals from 35 different families with MAS by exome sequencing. In 15 of 35 families (42.9%), we detected likely causal dominant mutations. In 15 of 35 (42.9%) families with MAS, whole exome sequencing revealed a mutation in one of the genes previously associated with vascular disease (NF1, JAG1, ELN, GATA6, and RNF213). Ten of the 15 mutations have not previously been reported. This is the first report of ELN, RNF213, or GATA6 mutations in individuals with MAS. Mutations were detected in NF1 (6/15 families), JAG1 (4/15 families), ELN (3/15 families), and one family each for GATA6 and RNF213 Eight individuals had syndromic disease and 7 individuals had isolated MAS. Whole exome sequencing can provide conclusive molecular genetic diagnosis in a high fraction of individuals with syndromic or isolated MAS. Establishing an etiologic diagnosis may reveal genotype/phenotype correlations for MAS in the future and should, therefore, be performed routinely in MAS.


Assuntos
Estenose da Valva Aórtica , Hipertensão , Proteína Jagged-1/genética , Neurofibromatoses , Neurofibromina 1/genética , Adolescente , Aorta Abdominal/patologia , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/genética , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Estudos de Associação Genética , Humanos , Hipertensão/diagnóstico , Hipertensão/genética , Masculino , Mutação , Neurofibromatoses/diagnóstico , Neurofibromatoses/genética , Linhagem , Síndrome , Estados Unidos , Sequenciamento do Exoma/métodos
13.
Nature ; 543(7646): 519-524, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28273065

RESUMO

The organization of the genome in the nucleus and the interactions of genes with their regulatory elements are key features of transcriptional control and their disruption can cause disease. Here we report a genome-wide method, genome architecture mapping (GAM), for measuring chromatin contacts and other features of three-dimensional chromatin topology on the basis of sequencing DNA from a large collection of thin nuclear sections. We apply GAM to mouse embryonic stem cells and identify enrichment for specific interactions between active genes and enhancers across very large genomic distances using a mathematical model termed SLICE (statistical inference of co-segregation). GAM also reveals an abundance of three-way contacts across the genome, especially between regions that are highly transcribed or contain super-enhancers, providing a level of insight into genome architecture that, owing to the technical limitations of current technologies, has previously remained unattainable. Furthermore, GAM highlights a role for gene-expression-specific contacts in organizing the genome in mammalian nuclei.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Mapeamento Cromossômico , Elementos Facilitadores Genéticos/genética , Genoma/genética , Animais , Cromatina/química , Epigênese Genética , Masculino , Camundongos , Modelos Genéticos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Análise de Sequência de DNA , Transcrição Gênica/genética
14.
PLoS One ; 11(5): e0156081, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27224062

RESUMO

Recessive mutations in the SDCCAG8 gene cause a nephronophthisis-related ciliopathy with Bardet-Biedl syndrome-like features in humans. Our previous characterization of the orthologous Sdccag8gt/gt mouse model recapitulated the retinal-renal disease phenotypes and identified impaired DNA damage response signaling as an underlying disease mechanism in the kidney. However, several other phenotypic and mechanistic features of Sdccag8gt/gt mice remained unexplored. Here we show that Sdccag8gt/gt mice exhibit developmental and structural abnormalities of the skeleton and limbs, suggesting impaired Hedgehog (Hh) signaling. Indeed, cell culture studies demonstrate the requirement of SDCCAG8 for ciliogenesis and Hh signaling. Using an affinity proteomics approach, we demonstrate that SDCCAG8 interacts with proteins of the centriolar satellites (OFD1, AZI1), of the endosomal sorting complex (RABEP2, ERC1), and with non-muscle myosin motor proteins (MYH9, MYH10, MYH14) at the centrosome. Furthermore, we show that RABEP2 localization at the centrosome is regulated by SDCCAG8. siRNA mediated RABEP2 knockdown in hTERT-RPE1 cells leads to defective ciliogenesis, indicating a critical role for RABEP2 in this process. Together, this study identifies several centrosome-associated proteins as novel SDCCAG8 interaction partners, and provides new insights into the function of SDCCAG8 at this structure.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autoantígenos/metabolismo , Centríolos/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Autoantígenos/genética , Centríolos/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Camundongos , Camundongos Transgênicos , Miosinas/genética , Miosinas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Transporte Vesicular/genética
15.
J Am Soc Nephrol ; 27(12): 3552-3559, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27026368

RESUMO

Karyomegalic interstitial nephritis (KIN) is a chronic interstitial nephropathy characterized by tubulointerstitial nephritis and formation of enlarged nuclei in the kidneys and other tissues. We recently reported that recessive mutations in the gene encoding FANCD2/FANCI-associated nuclease 1 (FAN1) cause KIN in humans. FAN1 is a major component of the Fanconi anemia-related pathway of DNA damage response (DDR) signaling. To study the pathogenesis of KIN, we generated a Fan1 knockout mouse model, with abrogation of Fan1 expression confirmed by quantitative RT-PCR. Challenging Fan1-/- and wild-type mice with 20 mg/kg cisplatin caused AKI in both genotypes. In contrast, chronic injection of cisplatin at 2 mg/kg induced KIN that led to renal failure within 5 weeks in Fan1-/- mice but not in wild-type mice. Cell culture studies showed decreased survival and reduced colony formation of Fan1-/- mouse embryonic fibroblasts and bone marrow mesenchymal stem cells compared with wild-type counterparts in response to treatment with genotoxic agents, suggesting that FAN1 mutations cause chemosensitivity and bone marrow failure. Our data show that Fan1 is involved in the physiologic response of kidney tubular cells to DNA damage, which contributes to the pathogenesis of CKD. Moreover, Fan1-/- mice provide a new model with which to study the pathomechanisms of CKD.


Assuntos
Endodesoxirribonucleases/genética , Mutação , Nefrite Intersticial/enzimologia , Nefrite Intersticial/genética , Animais , Modelos Animais de Doenças , Exodesoxirribonucleases , Camundongos , Camundongos Knockout , Enzimas Multifuncionais , Insuficiência Renal Crônica/etiologia
16.
Nat Commun ; 7: 10822, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26905694

RESUMO

Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease (CKD). Here we show that recessive mutations in FAT1 cause a distinct renal disease entity in four families with a combination of SRNS, tubular ectasia, haematuria and facultative neurological involvement. Loss of FAT1 results in decreased cell adhesion and migration in fibroblasts and podocytes and the decreased migration is partially reversed by a RAC1/CDC42 activator. Podocyte-specific deletion of Fat1 in mice induces abnormal glomerular filtration barrier development, leading to podocyte foot process effacement. Knockdown of Fat1 in renal tubular cells reduces migration, decreases active RAC1 and CDC42, and induces defects in lumen formation. Knockdown of fat1 in zebrafish causes pronephric cysts, which is partially rescued by RAC1/CDC42 activators, confirming a role of the two small GTPases in the pathogenesis. These findings provide new insights into the pathogenesis of SRNS and tubulopathy, linking FAT1 and RAC1/CDC42 to podocyte and tubular cell function.


Assuntos
Caderinas/genética , Adesão Celular/genética , Movimento Celular/genética , Fibroblastos/metabolismo , Síndrome Nefrótica/congênito , Podócitos/metabolismo , Proteínas de Peixe-Zebra/genética , Animais , Dilatação Patológica/genética , Técnicas de Silenciamento de Genes , Hematúria/genética , Humanos , Túbulos Renais/citologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Lisencefalia/genética , Camundongos , Mutação , Síndrome Nefrótica/genética , Síndrome , Peixe-Zebra , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
17.
J Med Genet ; 53(3): 208-14, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26673778

RESUMO

BACKGROUND: The term nephronophthisis-related ciliopathies (NPHP-RC) describes a group of rare autosomal-recessive cystic kidney diseases, characterised by broad genetic and clinical heterogeneity. NPHP-RC is frequently associated with extrarenal manifestations and accounts for the majority of genetically caused chronic kidney disease (CKD) during childhood and adolescence. Generation of a molecular diagnosis has been impaired by this broad genetic heterogeneity. However, recently developed high-throughput exon sequencing techniques represent powerful and efficient tools to screen large cohorts for dozens of causative genes. METHODS: Therefore, we performed massively multiplexed targeted sequencing using the modified molecular inversion probe strategy (MIPs) in an international cohort of 384 patients diagnosed with NPHP-RC. RESULTS: As a result, we established the molecular diagnoses in 81/384 unrelated individuals (21.1%). We detected 127 likely disease-causing mutations in 18 of 34 evaluated NPHP-RC genes, 22 of which were novel. We further compared a subgroup of current findings to the results of a previous study in which we used an array-based microfluidic PCR technology in the same cohort. While 78 likely disease-causing mutations were previously detected by the array-based microfluidic PCR, the MIPs approach identified 94 likely pathogenic mutations. Compared with the previous approach, MIPs redetected 66 out of 78 variants and 28 previously unidentified variants, for a total of 94 variants. CONCLUSIONS: In summary, we demonstrate that the modified MIPs technology is a useful approach to screen large cohorts for a multitude of established NPHP genes in order to identify the underlying molecular cause. Combined application of two independent library preparation and sequencing techniques, however, may still be indicated for Mendelian diseases with extensive genetic heterogeneity in order to further increase diagnostic sensitivity.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Doenças Renais Císticas/genética , Técnicas de Diagnóstico Molecular , Heterogeneidade Genética , Humanos , Sensibilidade e Especificidade
18.
Kidney Int ; 89(2): 468-475, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26489029

RESUMO

Chronically increased echogenicity on renal ultrasound is a sensitive early finding of chronic kidney disease that can be detected before manifestation of other symptoms. Increased echogenicity, however, is not specific for a certain etiology of chronic kidney disease. Here, we performed whole exome sequencing in 79 consanguineous or familial cases of suspected nephronophthisis in order to determine the underlying molecular disease cause. In 50 cases, there was a causative mutation in a known monogenic disease gene. In 32 of these cases whole exome sequencing confirmed the diagnosis of a nephronophthisis-related ciliopathy. In 8 cases it revealed the diagnosis of a renal tubulopathy. The remaining 10 cases were identified as Alport syndrome (4), autosomal-recessive polycystic kidney disease (2), congenital anomalies of the kidney and urinary tract (3), and APECED syndrome (1). In 5 families, in whom mutations in known monogenic genes were excluded, we applied homozygosity mapping for variant filtering and identified 5 novel candidate genes (RBM48, FAM186B, PIAS1, INCENP, and RCOR1) for renal ciliopathies. Thus, whole exome sequencing allows the detection of the causative mutation in 2/3 of affected individuals, thereby presenting the etiologic diagnosis, and allows identification of novel candidate genes.


Assuntos
Insuficiência Renal Crônica/genética , Idade de Início , Estudos de Coortes , Análise Mutacional de DNA , Exoma , Humanos , Doenças Renais Císticas/congênito , Doenças Renais Císticas/genética , Insuficiência Renal Crônica/diagnóstico por imagem
19.
Mol Syst Biol ; 11(12): 852, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26700852

RESUMO

Mammalian chromosomes fold into arrays of megabase-sized topologically associating domains (TADs), which are arranged into compartments spanning multiple megabases of genomic DNA. TADs have internal substructures that are often cell type specific, but their higher-order organization remains elusive. Here, we investigate TAD higher-order interactions with Hi-C through neuronal differentiation and show that they form a hierarchy of domains-within-domains (metaTADs) extending across genomic scales up to the range of entire chromosomes. We find that TAD interactions are well captured by tree-like, hierarchical structures irrespective of cell type. metaTAD tree structures correlate with genetic, epigenomic and expression features, and structural tree rearrangements during differentiation are linked to transcriptional state changes. Using polymer modelling, we demonstrate that hierarchical folding promotes efficient chromatin packaging without the loss of contact specificity, highlighting a role far beyond the simple need for packing efficiency.


Assuntos
Cromatina/química , Cromossomos/química , Células-Tronco Embrionárias Murinas/citologia , Neurônios/citologia , Transcrição Gênica , Animais , Diferenciação Celular , Células Cultivadas , Montagem e Desmontagem da Cromatina , Epigênese Genética , Regulação da Expressão Gênica , Camundongos
20.
Cell ; 163(6): 1484-99, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26638075

RESUMO

The centrosome is the primary microtubule organizing center of the cells and templates the formation of cilia, thereby operating at a nexus of critical cellular functions. Here, we use proximity-dependent biotinylation (BioID) to map the centrosome-cilium interface; with 58 bait proteins we generate a protein topology network comprising >7,000 interactions. Analysis of interaction profiles coupled with high resolution phenotypic profiling implicates a number of protein modules in centriole duplication, ciliogenesis, and centriolar satellite biogenesis and highlights extensive interplay between these processes. By monitoring dynamic changes in the centrosome-cilium protein interaction landscape during ciliogenesis, we also identify satellite proteins that support cilia formation. Systematic profiling of proximity interactions combined with functional analysis thus provides a rich resource for better understanding human centrosome and cilia biology. Similar strategies may be applied to other complex biological structures or pathways.


Assuntos
Centrossomo/metabolismo , Cílios/metabolismo , Mapas de Interação de Proteínas , Biotinilação , Ciclo Celular , Humanos , Centro Organizador dos Microtúbulos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...