Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 909824, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756027

RESUMO

Extracellular electron transfer (EET) - the process by which microorganisms transfer electrons across their membrane(s) to/from solid-phase materials - has implications for a wide range of biogeochemically important processes in marine environments. Though EET is thought to play an important role in the oxidation of inorganic minerals by lithotrophic organisms, the mechanisms involved in the oxidation of solid particles are poorly understood. To explore the genetic basis of oxidative EET, we utilized genomic analyses and transposon insertion mutagenesis screens (Tn-seq) in the metabolically flexible, lithotrophic Alphaproteobacterium Thioclava electrotropha ElOx9T. The finished genome of this strain is 4.3 MB, and consists of 4,139 predicted ORFs, 54 contain heme binding motifs, and 33 of those 54 are predicted to localize to the cell envelope or have unknown localizations. To begin to understand the genetic basis of oxidative EET in ElOx9T, we constructed a transposon mutant library in semi-rich media which was comprised of >91,000 individual mutants encompassing >69,000 unique TA dinucleotide insertion sites. The library was subjected to heterotrophic growth on minimal media with acetate and autotrophic oxidative EET conditions on indium tin oxide coated glass electrodes poised at -278 mV vs. SHE or un-poised in an open circuit condition. We identified 528 genes classified as essential under these growth conditions. With respect to electrochemical conditions, 25 genes were essential under oxidative EET conditions, and 29 genes were essential in both the open circuit control and oxidative EET conditions. Though many of the genes identified under electrochemical conditions are predicted to be localized in the cytoplasm and lack heme binding motifs and/or homology to known EET proteins, we identified several hypothetical proteins and poorly characterized oxidoreductases that implicate a novel mechanism(s) for EET that warrants further study. Our results provide a starting point to explore the genetic basis of novel oxidative EET in this marine sediment microbe.

2.
PeerJ ; 8: e9265, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655988

RESUMO

Ophiognomonia clavigignenti-juglandacearum (Oc-j) is a plant pathogenic fungus that causes canker and branch dieback diseases in the hardwood tree butternut, Juglans cinerea. Oc-j is a member of the order of Diaporthales, which includes many other plant pathogenic species, several of which also infect hardwood tree species. In this study, we sequenced the genome of Oc-j and achieved a high-quality assembly and delineated its phylogeny within the Diaporthales order using a genome-wide multi-gene approach. We also further examined multiple gene families that might be involved in plant pathogenicity and degradation of complex biomass, which are relevant to a pathogenic life-style in a tree host. We found that the Oc-j genome contains a greater number of genes in these gene families compared to other species in the Diaporthales. These gene families include secreted CAZymes, kinases, cytochrome P450, efflux pumps, and secondary metabolism gene clusters. The large numbers of these genes provide Oc-j with an arsenal to cope with the specific ecological niche as a pathogen of the butternut tree.

3.
Commun Biol ; 2: 362, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602411

RESUMO

Ecological interactions between aquatic plants and sediment communities can shape the structure and function of natural systems. Currently, we do not fully understand how seagrass habitat degradation impacts the biodiversity of belowground sediment communities. Here, we evaluated indirect effects of disturbance of seagrass meadows on meiobenthic community composition, with a five-month in situ experiment in a tropical seagrass meadow. Disturbance was created by reducing light availability (two levels of shading), and by mimicking grazing events (two levels) to assess impacts on meiobenthic diversity using high-throughput sequencing of 18S rRNA amplicons. Both shading and simulated grazing had an effect on meiobenthic community structure, mediated by seagrass-associated biotic drivers and sediment abiotic variables. Additionally, shading substantially altered the trophic structure of the nematode community. Our findings show that degradation of seagrass meadows can alter benthic community structure in coastal areas with potential impacts to ecosystem functions mediated by meiobenthos in marine sediments.


Assuntos
Biodiversidade , Hydrocharitaceae , Invertebrados , Animais , Organismos Aquáticos , Sedimentos Geológicos , Invertebrados/genética , Luz , Oceanos e Mares , RNA Ribossômico 18S
4.
Microb Ecol ; 78(2): 470-481, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30666369

RESUMO

Root knot nematodes (RKN, Meloidogyne spp.) are serious pathogens of numerous crops worldwide. Understanding the roles plant rhizosphere soil microbiome play during RKN infection is very important. The current study aims at investigating the impacts of soil microbiome on the activity of RKN. In this study, the 16S rRNA genes of the bacterial communities from nematode-infested and non-infested rhizosphere soils from four different plants were sequenced on the Illumina Hi-Seq platform. The soil microbiome effects on RKN infection were tested in a greenhouse assay. The non-infested soils had more microbial diversity than the infested soils from all plant rhizospheres, and both soil types had exclusive microbial communities. The inoculation of the microbiomes from eggplant and cucumber non-infested soils to tomato plants significantly alleviated the RKN infection, while the microbiome from infested soil showed increased the RKN infection. Furthermore, bacteria Pseudomonas sp. and Bacillus sp. were screened out from non-infested eggplant soil and exhibited biocontrol activity to RKN on tomato. Our findings suggest that microbes may regulate RKN infection in plants and are involved in biocontrol of RKN.


Assuntos
Antibiose , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Microbiota , Doenças das Plantas/parasitologia , Raízes de Plantas/microbiologia , Solanum lycopersicum/parasitologia , Tylenchoidea/fisiologia , Animais , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Solanum lycopersicum/microbiologia , Raízes de Plantas/parasitologia , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo
5.
Mol Ecol ; 27(23): 4972, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30562842
6.
Mol Ecol ; 27(8): 1930-1951, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29600535

RESUMO

Studies of host-associated microbes are critical for advancing our understanding of ecology and evolution across diverse taxa and ecosystems. Nematode worms are ubiquitous across most habitats on earth, yet little is known about host-associated microbial assemblages within the phylum. Free-living nematodes are globally abundant and diverse in marine sediments, with species exhibiting distinct buccal cavity (mouth) morphologies that are thought to play an important role in feeding ecology and life history strategies. Here, we investigated patterns in marine nematode microbiomes, by characterizing host-associated microbial taxa in 281 worms isolated from a range of habitat types (deep-sea, shallow water, methane seeps, Lophelia coral mounds, kelp holdfasts) across three distinct geographic regions (Arctic, Southern California and Gulf of Mexico). Microbiome profiles were generated from single worms spanning 33 distinct morphological genera, using a two-gene metabarcoding approach to amplify the V4 region of the 16S ribosomal RNA (rRNA) gene targeting bacteria/archaea and the V1-V2 region of the 18S rRNA gene targeting microbial eukaryotes. Contrary to our expectations, nematode microbiome profiles demonstrated no distinct patterns either globally (across depths and ocean basins) or locally (within site); prokaryotic and eukaryotic microbial assemblages did not correlate with nematode feeding morphology, host phylogeny or morphological identity, ocean region or marine habitat type. However, fine-scale analysis of nematode microbiomes revealed a variety of novel ecological interactions, including putative parasites and symbionts, and potential associations with bacterial/archaeal taxa involved in nitrogen and methane cycling. Our results suggest that in marine habitats, free-living nematodes may utilize diverse and generalist foraging strategies that are not correlated with host genotype or feeding morphology. Furthermore, some abiotic factors such as geographic region and habitat type do not appear to play an obvious role in structuring host-microbe associations or feeding preferences.


Assuntos
Ecossistema , Microbiota/genética , Nematoides/microbiologia , Filogenia , Animais , Antozoários/microbiologia , Archaea/genética , Regiões Árticas , California , Sedimentos Geológicos/microbiologia , Golfo do México , Nematoides/genética , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
7.
Genome Biol Evol ; 9(12): 3312-3327, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29186370

RESUMO

Geosmithia morbida is an emerging fungal pathogen which serves as a model for examining the evolutionary processes behind pathogenicity because it is one of two known pathogens within a genus of mostly saprophytic, beetle-associated, fungi. This pathogen causes thousand cankers disease in black walnut trees and is vectored into the host via the walnut twig beetle. Geosmithia morbida was first detected in western United States and currently threatens the timber industry concentrated in eastern United States. We sequenced the genomes of G. morbida in a previous study and two nonpathogenic Geosmithia species in this work and compared these species to other fungal pathogens and nonpathogens to identify genes under positive selection in G. morbida that may be associated with pathogenicity. Geosmithia morbida possesses one of the smallest genomes among the fungal species observed in this study, and one of the smallest fungal pathogen genomes to date. The enzymatic profile in this pathogen is very similar to its nonpathogenic relatives. Our findings indicate that genome reduction or retention of a smaller genome may be an important adaptative force during the evolution of a specialized lifestyle in fungal species that occupy a specificniche, such as beetle vectored tree pathogens. We also present potential genes under selection in G. morbida that could be important for adaptation to a pathogenic lifestyle.


Assuntos
Besouros/microbiologia , Genoma Fúngico , Interações Hospedeiro-Patógeno , Hypocreales/genética , Doenças das Plantas/microbiologia , Animais , Genômica , Hypocreales/classificação , Hypocreales/patogenicidade , Proteínas de Insetos/genética , Juglans/microbiologia , Filogenia , Padrões de Referência , Análise de Sequência de DNA
8.
Bioinformatics ; 33(10): 1473-1478, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28158639

RESUMO

MOTIVATION: Whole metagenome shotgun sequencing is a powerful approach for assaying the functional potential of microbial communities. We currently lack tools that efficiently and accurately align DNA reads against protein references, the technique necessary for constructing a functional profile. Here, we present PALADIN-a novel modification of the Burrows-Wheeler Aligner that provides accurate alignment, robust reporting capabilities and orders-of-magnitude improved efficiency by directly mapping in protein space. RESULTS: We compared the accuracy and efficiency of PALADIN against existing tools that employ nucleotide or protein alignment algorithms. Using simulated reads, PALADIN consistently outperformed the popular DNA read mappers BWA and NovoAlign in detected proteins, percentage of reads mapped and ontological similarity. We also compared PALADIN against four existing protein alignment tools: BLASTX, RAPSearch2, DIAMOND and Lambda, using empirically obtained reads. PALADIN yielded results seven times faster than the best performing alternative, DIAMOND and nearly 8000 times faster than BLASTX. PALADIN's accuracy was comparable to all tested solutions. AVAILABILITY AND IMPLEMENTATION: PALADIN was implemented in C, and its source code and documentation are available at https://github.com/twestbrookunh/paladin. CONTACT: anthonyw@wildcats.unh.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metagenômica/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Software , Algoritmos , Bactérias/genética , Bactérias/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Microbiota/genética
9.
PeerJ ; 4: e1952, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27168971

RESUMO

Geosmithia morbida is a filamentous ascomycete that causes thousand cankers disease in the eastern black walnut tree. This pathogen is commonly found in the western U.S.; however, recently the disease was also detected in several eastern states where the black walnut lumber industry is concentrated. G. morbida is one of two known phytopathogens within the genus Geosmithia, and it is vectored into the host tree via the walnut twig beetle. We present the first de novo draft genome of G. morbida. It is 26.5 Mbp in length and contains less than 1% repetitive elements. The genome possesses an estimated 6,273 genes, 277 of which are predicted to encode proteins with unknown functions. Approximately 31.5% of the proteins in G. morbida are homologous to proteins involved in pathogenicity, and 5.6% of the proteins contain signal peptides that indicate these proteins are secreted. Several studies have investigated the evolution of pathogenicity in pathogens of agricultural crops; forest fungal pathogens are often neglected because research efforts are focused on food crops. G. morbida is one of the few tree phytopathogens to be sequenced, assembled and annotated. The first draft genome of G. morbida serves as a valuable tool for comprehending the underlying molecular and evolutionary mechanisms behind pathogenesis within the Geosmithia genus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...