Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(20): 2063-2079.e9, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37557176

RESUMO

Proper localization of receptors for synaptic organizing factors is crucial for synapse formation. Wnt proteins promote synapse assembly through Frizzled (Fz) receptors. In hippocampal neurons, the surface and synaptic localization of Fz5 is regulated by neuronal activity, but the mechanisms involved remain poorly understood. Here, we report that all Fz receptors can be post-translationally modified by S-acylation and that Fz5 is S-acylated on three C-terminal cysteines by zDHHC5. S-acylation is essential for Fz5 localization to the cell surface, axons, and presynaptic sites. Notably, S-acylation-deficient Fz5 is internalized faster, affecting its association with signalosome components at the cell surface. S-acylation-deficient Fz5 also fails to activate canonical and divergent canonical Wnt pathways. Fz5 S-acylation levels are regulated by the pattern of neuronal activity. In vivo studies demonstrate that S-acylation-deficient Fz5 expression fails to induce presynaptic assembly. Our studies show that S-acylation of Frizzled receptors is a mechanism controlling their localization and function.


Assuntos
Receptores Frizzled , Roedores , Animais , Roedores/metabolismo , Receptores Frizzled/metabolismo , Via de Sinalização Wnt , Hipocampo/metabolismo , Acilação
2.
Nat Neurosci ; 25(4): 446-457, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379994

RESUMO

The age at onset of motor symptoms in Huntington's disease (HD) is driven by HTT CAG repeat length but modified by other genes. In this study, we used exome sequencing of 683 patients with HD with extremes of onset or phenotype relative to CAG length to identify rare variants associated with clinical effect. We discovered damaging coding variants in candidate modifier genes identified in previous genome-wide association studies associated with altered HD onset or severity. Variants in FAN1 clustered in its DNA-binding and nuclease domains and were associated predominantly with earlier-onset HD. Nuclease activities of purified variants in vitro correlated with residual age at motor onset of HD. Mutating endogenous FAN1 to a nuclease-inactive form in an induced pluripotent stem cell model of HD led to rates of CAG expansion similar to those observed with complete FAN1 knockout. Together, these data implicate FAN1 nuclease activity in slowing somatic repeat expansion and hence onset of HD.


Assuntos
Endodesoxirribonucleases , Exodesoxirribonucleases , Doença de Huntington , Expansão das Repetições de Trinucleotídeos , Idade de Início , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Exoma/genética , Estudo de Associação Genômica Ampla , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Sequenciamento do Exoma
3.
Mol Metab ; 49: 101201, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33647468

RESUMO

OBJECTIVES: The only proteins known to be modified by O-linked lipidation are Wnts and ghrelin, and enzymatic removal of this post-translational modification inhibits ligand activity. Indeed, the Wnt-deacylase activity of Notum is the basis of its ability to act as a feedback inhibitor of Wnt signalling. Whether Notum also deacylates ghrelin has not been determined. METHODS: We used mass spectrometry to assay ghrelin deacylation by Notum and co-crystallisation to reveal enzyme-substrate interactions at the atomic level. CRISPR/Cas technology was used to tag endogenous Notum and assess its localisation in mice while liver-specific Notum knock-out mice allowed us to investigate the physiological role of Notum in modulating the level of ghrelin deacylation. RESULTS: Mass spectrometry detected the removal of octanoyl from ghrelin by purified active Notum but not by an inactive mutant. The 2.2 Å resolution crystal structure of the Notum-ghrelin complex showed that the octanoyl lipid was accommodated in the hydrophobic pocket of the Notum. The knock-in allele expressing HA-tagged Notum revealed that Notum was produced in the liver and present in the bloodstream, albeit at a low level. Liver-specific inactivation of Notum in animals fed a high-fat diet led to a small but significant increase in acylated ghrelin in the circulation, while no such increase was seen in wild-type animals on the same diet. CONCLUSIONS: Overall, our data demonstrate that Notum can act as a ghrelin deacylase, and that this may be physiologically relevant under high-fat diet conditions. Our study therefore adds Notum to the list of enzymes, including butyrylcholinesterase and other carboxylesterases, that modulate the acylation state of ghrelin. The contribution of multiple enzymes could help tune the activity of this important hormone to a wide range of physiological conditions.


Assuntos
Esterases/metabolismo , Grelina/genética , Grelina/metabolismo , Acilação , Animais , Butirilcolinesterase/metabolismo , Esterases/química , Esterases/genética , Humanos , Ligantes , Masculino , Camundongos , Camundongos Knockout
4.
Elife ; 92020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32310087

RESUMO

To spatially co-exist and differentially specify fates within developing tissues, morphogenetic cues must be correctly positioned and interpreted. Here, we investigate mouse hair follicle development to understand how morphogens operate within closely spaced, fate-diverging progenitors. Coupling transcriptomics with genetics, we show that emerging hair progenitors produce both WNTs and WNT inhibitors. Surprisingly, however, instead of generating a negative feedback loop, the signals oppositely polarize, establishing sharp boundaries and consequently a short-range morphogen gradient that we show is essential for three-dimensional pattern formation. By establishing a morphogen gradient at the cellular level, signals become constrained. The progenitor preserves its WNT signaling identity and maintains WNT signaling with underlying mesenchymal neighbors, while its overlying epithelial cells become WNT-restricted. The outcome guarantees emergence of adjacent distinct cell types to pattern the tissue.


Assuntos
Folículo Piloso/embriologia , Células-Tronco/fisiologia , Proteínas Wnt/antagonistas & inibidores , Via de Sinalização Wnt/fisiologia , Animais , Polaridade Celular , Camundongos , Morfogênese/fisiologia , Proteínas Wnt/fisiologia
5.
J Biol Chem ; 293(5): 1756-1766, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29237731

RESUMO

Acid-sensing ion channels (ASICs) form both homotrimeric and heterotrimeric ion channels that are activated by extracellular protons and are involved in a wide range of physiological and pathophysiological processes, including pain and anxiety. ASIC proteins can form both homotrimeric and heterotrimeric ion channels. The ASIC3 subunit has been shown to be of particular importance in the peripheral nervous system with pharmacological and genetic manipulations demonstrating a role in pain. Naked mole-rats, despite having functional ASICs, are insensitive to acid as a noxious stimulus and show diminished avoidance of acidic fumes, ammonia, and carbon dioxide. Here we cloned naked mole-rat ASIC3 (nmrASIC3) and used a cell-surface biotinylation assay to demonstrate that it traffics to the plasma membrane, but using whole-cell patch clamp electrophysiology we observed that nmrASIC3 is insensitive to both protons and the non-proton ASIC3 agonist 2-guanidine-4-methylquinazoline. However, in line with previous reports of ASIC3 mRNA expression in dorsal root ganglia neurons, we found that the ASIC3 antagonist APETx2 reversibly inhibits ASIC-like currents in naked mole-rat dorsal root ganglia neurons. We further show that like the proton-insensitive ASIC2b and ASIC4, nmrASIC3 forms functional, proton-sensitive heteromers with other ASIC subunits. An amino acid alignment of ASIC3s between 9 relevant rodent species and human identified unique sequence differences that might underlie the proton insensitivity of nmrASIC3. However, introducing nmrASIC3 differences into rat ASIC3 (rASIC3) produced only minor differences in channel function, and replacing the nmrASIC3 sequence with that of rASIC3 did not produce a proton-sensitive ion channel. Our observation that nmrASIC3 forms nonfunctional homomers may reflect a further adaptation of the naked mole-rat to living in an environment with high-carbon dioxide levels.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Membrana Celular/metabolismo , Multimerização Proteica , Subunidades Proteicas/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Animais , Membrana Celular/genética , Guanidinas/farmacologia , Ratos-Toupeira , Subunidades Proteicas/genética , Quinazolinas/farmacologia
6.
Mol Brain ; 9(1): 97, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27964758

RESUMO

Acid-sensing ion channels (ASICs) are a family of ion channels comprised of six subunits encoded by four genes and they are expressed throughout the peripheral and central nervous systems. ASICs have been implicated in a wide range of physiological and pathophysiological processes: pain, breathing, synaptic plasticity and excitotoxicity. Unlike mice and humans, naked mole-rats do not perceive acid as a noxious stimulus, even though their sensory neurons express functional ASICs, likely an adaptation to living in a hypercapnic subterranean environment. Previous studies of ASIC expression in the mammalian nervous system have often not examined all subunits, or have failed to adequately quantify expression between tissues; to date there has been no attempt to determine ASIC expression in the central nervous system of the naked mole-rat. Here we perform a geNorm study to identify reliable housekeeping genes in both mouse and naked mole-rat and then use quantitative real-time PCR to estimate the relative amounts of ASIC transcripts in different tissues of both species. We identify RPL13A (ribosomal protein L13A) and CANX (calnexin), and ß-ACTIN and EIF4A (eukaryotic initiation factor 4a) as being the most stably expressed housekeeping genes in mouse and naked mole-rat, respectively. In both species, ASIC3 was most highly expressed in dorsal root ganglia (DRG), and ASIC1a, ASIC2b and ASIC3 were more highly expressed across all brain regions compared to the other subunits. We also show that ASIC4, a proton-insensitive subunit of relatively unknown function, was highly expressed in all mouse tissues apart from DRG and hippocampus, but was by contrast the lowliest expressed ASIC in all naked mole-rat tissues.


Assuntos
Canais Iônicos Sensíveis a Ácido/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Ratos-Toupeira , Especificidade de Órgãos/genética , RNA/genética , RNA/metabolismo , Padrões de Referência , Software
7.
Development ; 142(4): 743-752, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25617433

RESUMO

The troglomorphic phenotype shared by diverse cave-dwelling animals is regarded as a classical example of convergent evolution. One unresolved question is whether the characteristic eye loss in diverse cave species is based on interference with the same genetic program. Phreatichthys andruzzii, a Somalian cavefish, has evolved under constant conditions in complete darkness and shows severe troglomorphic characteristics, such as complete loss of eyes, pigments and scales. During early embryonic development, a complete eye is formed but is subsequently lost. In Astyanax mexicanus, another blind cavefish, eye loss has been attributed to interference during eye field patterning. To address whether similar pathways have been targeted by evolution independently, we investigated the retinal development of P. andruzzii, studying the expression of marker genes involved in eye patterning, morphogenesis, differentiation and maintenance. In contrast to Astyanax, patterning of the eye field and evagination of the optic vesicles proceeds without obvious deviation. However, the subsequent differentiation of retinal cell types is arrested during generation of the first-born cell type, retinal ganglion cells, which also fail to project correctly to the optic tectum. Eye degeneration in both species is driven by progressive apoptosis. However, it is retinal apoptosis in Phreatichthys that progresses in a wave-like manner and eliminates progenitor cells that fail to differentiate, in contrast to Astyanax, where lens apoptosis appears to serve as a driving force. Thus, evolution has targeted late retinal differentiation events, indicating that there are several ways to discontinue the development and maintenance of an eye.


Assuntos
Olho/crescimento & desenvolvimento , Retina/embriologia , Animais , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Olho/metabolismo , Peixes , Morfogênese/fisiologia , Retina/metabolismo
8.
Mol Pharmacol ; 87(4): 561-71, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25583083

RESUMO

The acid-sensing ion channels (ASICs) are a family of ion channels expressed throughout the mammalian nervous system. The principal activator of ASICs is extracellular protons, and ASICs have been demonstrated to play a significant role in many physiologic and pathophysiologic processes, including synaptic transmission, nociception, and fear. However, not all ASICs are proton-sensitive: ASIC2a is activated by acid, whereas its splice variant ASIC2b is not. We made a series of chimeric ASIC2 proteins, and using whole-cell electrophysiology we have identified the minimal region of the ASIC2a extracellular domain that is required for ASIC2 proton activation: the first 87 amino acids after transmembrane domain 1. We next examined the function of different domains within the ASIC2b N-terminus and identified a region proximal to the first transmembrane domain that confers tachyphylaxis upon ASIC2a. We have thus identified domains of ASIC2 that are crucial to channel function and may be important for the function of other members of the ASIC family.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/genética , Animais , Células CHO , Cricetulus , Técnicas de Patch-Clamp , Isoformas de Proteínas , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Taquifilaxia
9.
Neuropharmacology ; 94: 80-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25528740

RESUMO

It is well established that some members of the Deg/ENaC super family of amiloride sensitive ion channels can participate directly in the transduction of mechanical stimuli by sensory neurons in invertebrates. A large body of work has also implicated the acid sensing ion channels family (ASIC1-4) as participants in regulating mechanoreceptor sensitivity in vertebrates. In this review we provide an overview of the physiological and genetic evidence for involvement of ASICs in mechanosensory function. On balance, the available evidence favors the idea that these channels have an important regulatory role in mechanosensory function. It is striking how diverse the consequences of Asic gene deletion are on mechanosensory function with both gain and loss of function effects being observed depending on sensory neuron type. We conclude that other, as yet unknown, molecular partners of ASIC proteins may be decisive in determining their precise physiological role in mechanosensory neurons. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Mecanorreceptores/metabolismo , Animais , Humanos
10.
BMC Evol Biol ; 11: 340, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22103894

RESUMO

BACKGROUND: Basic helix-loop-helix and homeodomain transcription factors have been shown to specify all different neuronal cell subtypes composing the vertebrate retina. The appearance of gene paralogs of such retina-specific transcription factors in lower vertebrates, with differently evolved function and/or conserved non-coding elements, might provide an important source for the generation of neuronal diversity within the vertebrate retinal architecture. In line with this hypothesis, we investigated the evolution of the homeobox Barhl family of transcription factors, barhl1 and barhl2, in the teleost and tetrapod lineages. In tetrapod barhl2, but not barhl1, is expressed in the retina and is important for amacrine cell specification. Zebrafish has three barhl paralogs: barhl1.1, barhl1.2 and barhl2, but their precise spatio-temporal retinal expression, as well as their function is yet unknown. RESULTS: Here we performed a meticulous expression pattern comparison of all known barhl fish paralogs and described a novel barhl paralog in medaka. Our detailed analysis of zebrafish barhl gene expression in wild type and mutant retinas revealed that only barhl1.2 and barhl2 are present in the retina. We also showed that these two paralogs are expressed in distinct neuronal lineages and are differently regulated by Atoh7, a key retinal-specific transcription factor. Finally, we found that the two retained medaka fish barhl paralogs, barhl1 and barhl2, are both expressed in the retina, in a pattern reminiscent of zebrafish barhl1.2 and barhl2 respectively. By performing phylogenetic and synteny analysis, we provide evidence that barhl retinal expression domain is an ancestral feature, probably lost in tetrapods due to functional redundancy. CONCLUSIONS: Functional differences among retained paralogs of key retina-specific transcription factors between teleosts and tetrapods might provide important clues for understanding their potential impact on the generation of retinal neuronal diversity. Intriguingly, within teleosts, retention of zebrafish barhl1.2 and its medaka ortholog barhl1 appears to correlate with the acquisition of distinct signalling mechanisms by the two genes within distinct retinal cell lineages. Our findings provide a starting point for the study of barhl gene evolution in relation to the generation of cell diversity in the vertebrate retina.


Assuntos
Linhagem da Célula , Proteínas de Peixes/genética , Proteínas de Homeodomínio/genética , Oryzias/genética , Retina/citologia , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Proteínas de Peixes/química , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/química , Humanos , Dados de Sequência Molecular , Filogenia , Retina/embriologia , Retina/metabolismo , Alinhamento de Sequência , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...