Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16038, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749181

RESUMO

Most sap-feeding insects maintain obligate relationships with endosymbiotic bacteria that provide their hosts with essential nutrients. However, knowledge about the dynamics of endosymbiont titers across seasons in natural host populations is scarce. Here, we used quantitative PCR to investigate the seasonal dynamics of the dual endosymbionts "Candidatus Carsonella ruddii" and "Ca. Psyllophila symbiotica" in a natural population of the pear psyllid Cacopsylla pyricola (Hemiptera: Psylloidea: Psyllidae). Psyllid individuals were collected across an entire year, covering both summer and overwintering generations. Immatures harboured the highest titers of both endosymbionts, while the lowest endosymbiont density was observed in males. The density of Carsonella remained high and relatively stable across the vegetative period of the pear trees, but significantly dropped during the non-vegetative period, overlapping with C. pyricola's reproductive diapause. In contrast, the titer of Psyllophila was consistently higher than Carsonella's and exhibited fluctuations throughout the sampling year, which might be related to host age. Despite a tightly integrated metabolic complementarity between Carsonella and Psyllophila, our findings highlight differences in their density dynamics throughout the year, that might be linked to their metabolic roles at different life stages of the host.


Assuntos
Hemípteros , Pyrus , Humanos , Masculino , Animais , Estações do Ano , Hemípteros/microbiologia , Simbiose , Bactérias
2.
mSystems ; 8(5): e0057823, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37768069

RESUMO

IMPORTANCE: Heritable beneficial bacterial endosymbionts have been crucial for the evolutionary success of numerous insects by enabling the exploitation of nutritionally limited food sources. Herein, we describe a previously unknown dual endosymbiosis in the psyllid genus Cacopsylla, consisting of the primary endosymbiont "Candidatus Carsonella ruddii" and a co-occurring Enterobacteriaceae bacterium for which we propose the name "Candidatus Psyllophila symbiotica." Its localization within the bacteriome and its small genome size confirm that Psyllophila is a co-primary endosymbiont widespread within the genus Cacopsylla. Despite its highly eroded genome, Psyllophila perfectly complements the tryptophan biosynthesis pathway that is incomplete in the co-occurring Carsonella. Moreover, the genome of Psyllophila is almost as small as Carsonella's, suggesting an ancient dual endosymbiosis that has now reached a precarious stage where any additional gene loss would make the system collapse. Hence, our results shed light on the dynamic interactions of psyllids and their endosymbionts over evolutionary time.


Assuntos
Hemípteros , Animais , Hemípteros/genética , Simbiose/genética , Filogenia , Bactérias , Enterobacteriaceae/genética
3.
Sci Rep ; 12(1): 16502, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192576

RESUMO

Wolbachia is one of the most abundant intracellular symbionts of arthropods and has profound effects on host biology. Wolbachia transmission and host phenotypes often depend on its density within the host, which can be affected by multiple biotic and abiotic factors. However, very few studies measured Wolbachia density in natural host populations. Here, we describe Wolbachia in the pear psyllid Cacopsylla pyri from three populations in the Czech Republic. Using phylogenetic analyses based on wsp and multilocus sequence typing genes, we demonstrate that C. pyri harbours three new Wolbachia strains from supergroup B. A fourth Wolbachia strain from supergroup A was also detected in parasitised immatures of C. pyri, but likely came from a hymenopteran parasitoid. To obtain insights into natural Wolbachia infection dynamics, we quantified Wolbachia in psyllid individuals from the locality with the highest prevalence across an entire year, spanning several seasonal generations of the host. All tested females were infected and Wolbachia density remained stable across the entire period, suggesting a highly efficient vertical transmission and little influence from the environment and different host generations. In contrast, we observed a tendency towards reduced Wolbachia density in males which may suggest sex-related differences in Wolbachia-psyllid interactions.


Assuntos
Hemípteros , Pyrus , Wolbachia , Animais , Feminino , Hemípteros/genética , Masculino , Filogenia , Estações do Ano , Wolbachia/genética
4.
Environ Microbiol ; 24(12): 5788-5808, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054322

RESUMO

Psyllids are phloem-feeding insects that can transmit plant pathogens such as phytoplasmas, intracellular bacteria causing numerous plant diseases worldwide. Their microbiomes are essential for insect physiology and may also influence the capacity of vectors to transmit pathogens. Using 16S rRNA gene metabarcoding, we compared the microbiomes of three sympatric psyllid species associated with pear trees in Central Europe. All three species are able to transmit 'Candidatus Phytoplasma pyri', albeit with different efficiencies. Our results revealed potential relationships between insect biology and microbiome composition that varied during psyllid ontogeny and between generations in Cacopsylla pyri and C. pyricola, as well as between localities in C. pyri. In contrast, no variations related to psyllid life cycle and geography were detected in C. pyrisuga. In addition to the primary endosymbiont Carsonella ruddii, we detected another highly abundant endosymbiont (unclassified Enterobacteriaceae). C. pyri and C. pyricola shared the same taxon of Enterobacteriaceae which is related to endosymbionts harboured by other psyllid species from various families. In contrast, C. pyrisuga carried a different Enterobacteriaceae taxon related to the genus Sodalis. Our study provides new insights into host-symbiont interactions in psyllids and highlights the importance of host biology and geography in shaping microbiome structure.


Assuntos
Hemípteros , Microbiota , Pyrus , Humanos , Animais , Hemípteros/microbiologia , RNA Ribossômico 16S/genética , Simbiose , Enterobacteriaceae/genética , Insetos , Microbiota/genética
5.
Environ Microbiol ; 24(10): 4771-4786, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35876309

RESUMO

Phytoplasmas are obligatory intracellular bacteria that colonize the phloem of many plant species and cause hundreds of plant diseases worldwide. In nature, phytoplasmas are primarily transmitted by hemipteran vectors. While all phloem-feeding insects could in principle transmit phytoplasmas, only a limited number of species have been confirmed as vectors. Knowledge about factors that might determine the vector capacity is currently scarce. Here, we characterized the microbiomes of vector and non-vector species of apple proliferation (AP) phytoplasma 'Candidatus Phytoplasma mali' to investigate their potential role in the vector capacity of the host. We performed high-throughput 16S rRNA metabarcoding of the two principal AP-vectors Cacopsylla picta and Cacopsylla melanoneura and eight Cacopsylla species, which are not AP-vectors but co-occur in apple orchards. The microbiomes of all species are dominated by Carsonella, the primary endosymbiont of psyllids and a second uncharacterized Enterobacteriaceae endosymbiont. Each Cacopsylla species harboured a species-specific phylotype of both symbionts. Moreover, we investigated differences between the microbiomes of AP-vector versus non-vector species and identified the predominant endosymbionts but also Wolbachia and several minor taxa as potential indicator species. Our study highlights the importance of considering the microbiome in future investigations of potential factors influencing host vector competence. We investigated the potential role of symbiotic bacteria in the acquisition and transmission of phytoplasma. By comparing the two main psyillid vector species of Apple proliferation (AP) phytoplasma and eight co-occurring species, which are not able to vector AP-phytoplasma, we found differences in the microbial communities of AP-vector and non-vector species, which appear to be driven by the predominant symbionts in both vector species and Wolbachia and several minor taxa in the non-vector species. In contrast, infection with AP-phytoplasma did not affect microbiome composition in both vector species. Our study provides new insights into the endosymbiont diversity of Cacopsylla spp. and highlights the importance of considering the microbiome when investigating potential factors influencing host vector competence.


Assuntos
Hemípteros , Malus , Microbiota , Phytoplasma , Animais , Hemípteros/microbiologia , Malus/microbiologia , Microbiota/genética , Phytoplasma/genética , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética
6.
J Evol Biol ; 35(1): 146-163, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34670006

RESUMO

Adaptation to novel environments can result in unanticipated genomic responses to selection. Here, we illustrate how multifarious, correlational selection helps explain a counterintuitive pattern of genetic divergence between the recently derived apple- and ancestral hawthorn-infesting host races of Rhagoletis pomonella (Diptera: Tephritidae). The apple host race terminates diapause and emerges as adults earlier in the season than the hawthorn host race, to coincide with the earlier fruiting phenology of their apple hosts. However, alleles at many loci associated with later emergence paradoxically occur at higher frequencies in sympatric populations of the apple compared to the hawthorn race. We present genomic evidence that historical selection over geographically varying environmental gradients across North America generated genetic correlations between two life history traits, diapause intensity and diapause termination, in the hawthorn host race. Moreover, the loci associated with these life history traits are concentrated in genomic regions in high linkage disequilibrium (LD). These genetic correlations are antagonistic to contemporary selection on local apple host race populations that favours increased initial diapause depth and earlier, not later, diapause termination. Thus, the paradox of apple flies appears due, in part, to pleiotropy or linkage of alleles associated with later adult emergence and increased initial diapause intensity, the latter trait strongly selected for by the earlier phenology of apples. Our results demonstrate how understanding of multivariate trait combinations and the correlative nature of selective forces acting on them can improve predictions concerning adaptive evolution and help explain seemingly counterintuitive patterns of genetic diversity in nature.


Assuntos
Crataegus , Diapausa , Características de História de Vida , Tephritidae , Animais , Crataegus/genética , Desequilíbrio de Ligação , Tephritidae/genética
7.
Mol Ecol ; 31(10): 2935-2950, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34455644

RESUMO

Endosymbiont-induced cytoplasmic incompatibility (CI) may play an important role in arthropod speciation. However, whether CI consistently becomes associated or coupled with other host-related forms of reproductive isolation (RI) to impede the transfer of endosymbionts between hybridizing populations and further the divergence process remains an open question. Here, we show that varying degrees of pre- and postmating RI exist among allopatric populations of two interbreeding cherry-infesting tephritid fruit flies (Rhagoletis cingulata and R. indifferens) across North America. These flies display allochronic and sexual isolation among populations, as well as unidirectional reductions in egg hatch in hybrid crosses involving southwestern USA males. All populations are infected by a Wolbachia strain, wCin2, whereas a second strain, wCin3, only co-infects flies from the southwest USA and Mexico. Strain wCin3 is associated with a unique mitochondrial DNA haplotype and unidirectional postmating RI, implicating the strain as the cause of CI. When coupled with nonendosymbiont RI barriers, we estimate the strength of CI associated with wCin3 would not prevent the strain from introgressing from infected southwestern to uninfected populations elsewhere in the USA if populations were to come into secondary contact and hybridize. In contrast, cytoplasmic-nuclear coupling may impede the transfer of wCin3 if Mexican and USA populations were to come into contact. We discuss our results in the context of the general paucity of examples demonstrating stable Wolbachia hybrid zones and whether the spread of Wolbachia among taxa can be constrained in natural hybrid zones long enough for the endosymbiont to participate in speciation.


Assuntos
Tephritidae , Wolbachia , Animais , Citoplasma/genética , DNA Mitocondrial/genética , Drosophila/genética , Masculino , Isolamento Reprodutivo , Tephritidae/genética , Wolbachia/genética
8.
Mol Ecol ; 30(23): 6259-6272, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33882628

RESUMO

Wolbachia is a maternally inherited obligate endosymbiont that can induce a wide spectrum of effects in its host, ranging from mutualism to reproductive parasitism. At the genomic level, recombination within and between strains, transposable elements, and horizontal transfer of strains between host species make Wolbachia an evolutionarily dynamic bacterial system. The invasive cherry fruit fly Rhagoletis cingulata arrived in Europe from North America ~40 years ago, where it now co-occurs with the native cherry pest R. cerasi. This shared distribution has been proposed to have led to the horizontal transfer of different Wolbachia strains between the two species. To better understand transmission dynamics, we performed a comparative genome study of the strain wCin2 in its native United States and invasive European populations of R. cingulata with wCer2 in European R. cerasi. Previous multilocus sequence genotyping (MLST) of six genes implied that the source of wCer2 in R. cerasi was wCin2 from R. cingulata. However, we report genomic evidence discounting the recent horizontal transfer hypothesis for the origin of wCer2. Despite near identical sequences for the MLST markers, substantial sequence differences for other loci were found between wCer2 and wCin2, as well as structural rearrangements, and differences in prophage, repetitive element, gene content, and cytoplasmic incompatibility inducing genes. Our study highlights the need for whole-genome sequencing rather than relying on MLST markers for resolving Wolbachia strains and assessing their evolutionary dynamics.


Assuntos
Tephritidae , Wolbachia , Animais , Drosophila , Tipagem de Sequências Multilocus , Simbiose/genética , Tephritidae/genética , Wolbachia/genética
9.
Bull Entomol Res ; 111(4): 394-401, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33106194

RESUMO

The brown marmorated stink bug Halyomorpha halys is one of the most harmful invasive species in the world. Native to East Asia, this insect was introduced into North America in the 1990s and into Europe in the 2000s where it subsequently established and spread across the continent. Previous population genetic studies determined the invasion pathways at continental and national levels. However, information on the dynamics on a small-scale is currently scarce. Here we study the genetic diversity and population dynamics of H. halys in South Tyrol, a region in Northern Italy, since its arrival to its widespread establishment over a period of four years. By haplotyping 162 individuals from ten populations (including six previously published individuals) we found a high haplotype diversity in most populations with an increasing diversity across the different years. Most haplotypes were previously found in other regions of Northern Italy, providing evidence for migration from neighboring regions. However, the presence of four previously undescribed haplotypes as well as a haplotype previously found exclusively in Greece highlights additional long-distance dispersal across the continent. Phylogenetic analysis of the haplotypes found in South Tyrol showed that the majority of haplotypes clustered with haplotypes predominantly found in Japan. This suggests a potential recent introduction of H. halys individuals from Japan into Europe, and thus an additional invasion pathway that was previously unidentified.


Assuntos
Variação Genética , Heterópteros/genética , Espécies Introduzidas , Animais , Itália , Filogeografia
10.
Ecol Evol ; 10(23): 12727-12744, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304490

RESUMO

An important criterion for understanding speciation is the geographic context of population divergence. Three major modes of allopatric, parapatric, and sympatric speciation define the extent of spatial overlap and gene flow between diverging populations. However, mixed modes of speciation are also possible, whereby populations experience periods of allopatry, parapatry, and/or sympatry at different times as they diverge. Here, we report clinal patterns of variation for 21 nuclear-encoded microsatellites and a wing spot phenotype for cherry-infesting Rhagoletis (Diptera: Tephritidae) across North America consistent with these flies having initially diverged in parapatry followed by a period of allopatric differentiation in the early Holocene. However, mitochondrial DNA (mtDNA) displays a different pattern; cherry flies at the ends of the clines in the eastern USA and Pacific Northwest share identical haplotypes, while centrally located populations in the southwestern USA and Mexico possess a different haplotype. We hypothesize that the mitochondrial difference could be due to lineage sorting but more likely reflects a selective sweep of a favorable mtDNA variant or the spread of an endosymbiont. The estimated divergence time for mtDNA suggests possible past allopatry, secondary contact, and subsequent isolation between USA and Mexican fly populations initiated before the Wisconsin glaciation. Thus, the current genetics of cherry flies may involve different mixed modes of divergence occurring in different portions of the fly's range. We discuss the need for additional DNA sequencing and quantification of prezygotic and postzygotic reproductive isolation to verify the multiple mixed-mode hypothesis for cherry flies and draw parallels from other systems to assess the generality that speciation may commonly involve complex biogeographies of varying combinations of allopatric, parapatric, and sympatric divergence.

11.
Insects ; 11(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33255992

RESUMO

Apple proliferation is an economically important disease and a threat for commercial apple cultivation. The causative pathogen, the bacterium 'Candidatus Phytoplasma mali', is mainly transmitted by Cacopsylla picta, a phloem-feeding insect that develops on the apple tree (Malus spp.). To investigate the feeding behavior of adults of the phytoplasma vector Cacopsylla picta in more detail, we used deep sequencing technology to identify plant-specific DNA ingested by the insect. Adult psyllids were collected in different apple orchards in the Trentino-South Tyrol region of northern Italy. DNA from the whole body of the insect was extracted and analyzed for the presence of plant DNA by performing PCR with two plant-specific primers that target the chloroplast regions trnH-psbA and rbcLa. DNA from 23 plant genera (trnH) and four plant families (rbcLa) of woody and herbaceous plant taxa was detected. Up to six and three plant genera and families, respectively, could be determined in single specimens. The results of this study contribute to a better understanding of the feeding behavior of adult Cacopsylla picta.

12.
Insects ; 11(10)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027888

RESUMO

The endosymbiont Wolbachia can manipulate arthropod host reproduction by inducing cytoplasmic incompatibility (CI), which results in embryonic mortality when infected males mate with uninfected females. A CI-driven invasion of Wolbachia can result in a selective sweep of associated mitochondrial haplotype. The co-inheritance of Wolbachia and host mitochondrial DNA can therefore provide significant information on the dynamics of an ongoing Wolbachia invasion. Therefore, transition zones (i.e., regions where a Wolbachia strain is currently spreading from infected to uninfected populations) represent an ideal area to investigate the relationship between Wolbachia and host mitochondrial haplotype. Here, we studied Wolbachia-mitochondrial haplotype associations in the European cherry fruit fly, Rhagoletis cerasi, in two transition zones in the Czech Republic and Hungary, where the CI-inducing strain wCer2 is currently spreading. The wCer2-infection status of 881 individuals was compared with the two known R. cerasi mitochondrial haplotypes, HT1 and HT2. In accordance with previous studies, wCer2-uninfected individuals were associated with HT1, and wCer2-infected individuals were mainly associated with HT2. We found misassociations only within the transition zones, where HT2 flies were wCer2-uninfected, suggesting the occurrence of imperfect maternal transmission. We did not find any HT1 flies that were wCer2-infected, suggesting that Wolbachia was not acquired horizontally. Our study provides new insights into the dynamics of the early phase of a Wolbachia invasion.

13.
Insects ; 10(9)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470668

RESUMO

Ascertaining the causes of adaptive radiation is central to understanding how new species arise and come to vary with their resources. The ecological theory posits adaptive radiation via divergent natural selection associated with novel resource use; an alternative suggests character displacement following speciation in allopatry and then secondary contact of reproductively isolated but ecologically similar species. Discriminating between hypotheses, therefore, requires the establishment of a key role for ecological diversification in initiating speciation versus a secondary role in facilitating co-existence. Here, we characterize patterns of genetic variation and postzygotic reproductive isolation for tephritid fruit flies in the Rhagoletis cingulata sibling species group to assess the significance of ecology, geography, and non-adaptive processes for their divergence. Our results support the ecological theory: no evidence for intrinsic postzygotic reproductive isolation was found between two populations of allopatric species, while nuclear-encoded microsatellites implied strong ecologically based reproductive isolation among sympatric species infesting different host plants. Analysis of mitochondrial DNA suggested, however, that cytoplasmic-related reproductive isolation may also exist between two geographically isolated populations within R cingulata. Thus, ecology associated with sympatric host shifts and cytoplasmic effects possibly associated with an endosymbiont may be the key initial drivers of the radiation of the R. cingulata group.

14.
Mol Ecol ; 28(20): 4648-4666, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31495015

RESUMO

Elucidating the mechanisms and conditions facilitating the formation of biodiversity are central topics in evolutionary biology. A growing number of studies imply that divergent ecological selection may often play a critical role in speciation by counteracting the homogenising effects of gene flow. Several examples involve phytophagous insects, where divergent selection pressures associated with host plant shifts may generate reproductive isolation, promoting speciation. Here, we use ddRADseq to assess the population structure and to test for host-related genomic differentiation in the European cherry fruit fly, Rhagoletis cerasi (L., 1758) (Diptera: Tephritidae). This tephritid is distributed throughout Europe and western Asia, and has adapted to two different genera of host plants, Prunus spp. (cherries) and Lonicera spp. (honeysuckle). Our data imply that geographic distance and geomorphic barriers serve as the primary factors shaping genetic population structure across the species range. Locally, however, flies genetically cluster according to host plant, with consistent allele frequency differences displayed by a subset of loci between Prunus and Lonicera flies across four sites surveyed in Germany and Norway. These 17 loci display significantly higher FST values between host plants than others. They also showed high levels of linkage disequilibrium within and between Prunus and Lonicera flies, supporting host-related selection and reduced gene flow. Our findings support the existence of sympatric host races in R. cerasi embedded within broader patterns of geographic variation in the fly, similar to the related apple maggot, Rhagoletis pomonella, in North America.


Assuntos
Especiação Genética , Variação Genética/genética , Especificidade de Hospedeiro/genética , Tephritidae/classificação , Tephritidae/genética , Animais , Fluxo Gênico/genética , Genoma/genética , Alemanha , Desequilíbrio de Ligação/genética , Lonicera , Noruega , Filogeografia , Prunus , Isolamento Reprodutivo
15.
Insects ; 10(6)2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31208002

RESUMO

Numerous terrestrial arthropods are infected with the alphaproteobacterium Wolbachia. This endosymbiont is usually transmitted vertically from infected females to their offspring and can alter the reproduction of hosts through various manipulations, like cytoplasmic incompatibility (CI), enhancing its spread in new host populations. Studies on the spatial and temporal dynamics of Wolbachia under natural conditions are scarce. Here, we analyzed Wolbachia infection frequencies in populations of the European cherry fruit fly, Rhagoletis cerasi (L.), in central Germany-an area of an ongoing spread of the CI-inducing strain wCer2. In total, 295 individuals from 19 populations were PCR-screened for the presence of wCer2 and their mitochondrial haplotype. Results were compared with historic data to understand the infection dynamics of the ongoing wCer2 invasion. An overall wCer2 infection frequency of about 30% was found, ranging from 0% to 100% per population. In contrast to an expected smooth transition from wCer2-infected to completely wCer2-uninfected populations, a relatively scattered infection pattern across geography was observed. Moreover, a strong Wolbachia-haplotype association was detected, with only a few rare misassociations. Our results show a complex dynamic of an ongoing Wolbachia spread in natural field populations of R. cerasi.

16.
Biol J Linn Soc Lond ; 127(1): 24-33, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31186586

RESUMO

The Apennine Mountains in Italy are an important biogeographical region and of particular interest in phylogeographical research, because they have been a refugium during Pleistocene glaciation events for numerous European species. We performed a genetic study on the Eurasian bark beetle Pityogenes chalcographus (Linnaeus, 1760), focusing on two Apennine (Italian) and two Central European (Austrian) locations to assess the influence of the Apennines in the evolutionary history of the beetle, particularly during the Pleistocene. We analysed a part of the mitochondrial COI gene and a set of 5470 informative genome-wide markers to understand its biogeography. We found 75 distinct mitochondrial haplotypes, which are structured in three main clades. In general, the Apennine locations harbour a higher number of mitochondrial clades than Central European sites, with one specific clade exclusively detected in the Apennines. Analysis of our genome-wide, multi-locus dataset reveals a clustering of P. chalcographus by geography, with Italian individuals clearly separated from Austrian samples. Our data highlight the significance of the Apennines for the genetic diversity of P. chalcographus and support the hypothesis that this area was an important refugium during unfavourable conditions in the Pleistocene. We discuss additional life-history traits and processes that shaped the evolution of this widespread beetle.

17.
Methods Mol Biol ; 1858: 195-212, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30414119

RESUMO

Intracellular bacteria are ubiquitous in the insect world, with perhaps the best-studied example being the alphaproteobacterium, Wolbachia. Like most endosymbionts, Wolbachia cannot be cultivated outside of its host cells, hindering traditional microbial characterization techniques. Furthermore, multiple Wolbachia strains can be present within a single host, and certain strains can be present in densities below the detection limit of current methods. To date, Wolbachia has most commonly been studied using polymerase chain reaction (PCR) amplification and Sanger DNA sequencing by targeting specific genes in the bacterium's genome. PCR amplification and Sanger sequencing of multiple Wolbachia strains requires analysis of individually cloned sequences, which is resource and labor intensive. To help mitigate these difficulties, we present a modified double digest restriction site associated DNA sequencing (ddRADseq) approach to target and sequence in parallel multiple genes by adding restriction enzyme recognition sites to gene-specific PCR primers. Adopting this strategy allows us to uniquely tag and sequence amplicons from multiple hosts simultaneously on an Illumina MiSeq platform. Our approach represents an efficient and cost-effective method to characterize multiple target genes in population surveys.


Assuntos
Biologia Computacional/métodos , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Insetos/microbiologia , Simbiose , Wolbachia/genética , Animais , Proteínas de Bactérias/genética , DNA Bacteriano/análise , DNA Bacteriano/genética , Análise de Sequência de DNA/métodos , Wolbachia/isolamento & purificação , Wolbachia/fisiologia
19.
Sci Rep ; 8(1): 14207, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242185

RESUMO

Historical climatic oscillations and co-evolutionary dependencies were key evolutionary drivers shaping the current population structure of numerous organisms. Here, we present a genome-wide study on the biogeography of the bark beetle Pityogenes chalcographus, a common and widespread insect in Eurasia. Using Restriction Associated DNA Sequencing, we studied the population structure of this beetle across a wide part of its western Palaearctic range with the goal of elucidating the role of Pleistocene glacial-interglacial cycling and its close relationship to its main host plant Norway spruce. Genetic distance among geographic sites was generally low, but clustering analysis revealed three genetically distinct groups, that is, southern, central/south-eastern, and north-eastern locations. Thus, three key P. chalcographus glacial refugia were identified: in the Italian-Dinaric region, the Carpathians, and the Russian plain, shared with its main host. The current phylogeographic signal was affected by genetic divergence among geographically isolated refugia during glacial periods and postglacial re-establishment of genetic exchange through secondary contact, reflected by admixture among genetic groups. Additionally, certain life history traits, like the beetle's dispersal and reproductive behaviour, considerably influenced its demographic history. Our results will help to understand the biogeography of other scolytine beetles, especially species with similar life history traits.


Assuntos
Besouros/genética , Animais , Evolução Biológica , DNA Mitocondrial/genética , Demografia , Evolução Molecular , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Haplótipos/genética , Noruega , Filogenia , Filogeografia/métodos , Casca de Planta , Refúgio de Vida Selvagem , Reprodução/genética , Federação Russa , Análise de Sequência de DNA/métodos
20.
Genes (Basel) ; 9(5)2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29783692

RESUMO

A major goal of evolutionary biology is to understand how variation within populations gets partitioned into differences between reproductively isolated species. Here, we examine the degree to which diapause life history timing, a critical adaptation promoting population divergence, explains geographic and host-related genetic variation in ancestral hawthorn and recently derived apple-infesting races of Rhagoletis pomonella. Our strategy involved combining experiments on two different aspects of diapause (initial diapause intensity and adult eclosion time) with a geographic survey of genomic variation across four sites where apple and hawthorn flies co-occur from north to south in the Midwestern USA. The results demonstrated that the majority of the genome showing significant geographic and host-related variation can be accounted for by initial diapause intensity and eclosion time. Local genomic differences between sympatric apple and hawthorn flies were subsumed within broader geographic clines; allele frequency differences within the races across the Midwest were two to three-fold greater than those between the races in sympatry. As a result, sympatric apple and hawthorn populations displayed more limited genomic clustering compared to geographic populations within the races. The findings suggest that with reduced gene flow and increased selection on diapause equivalent to that seen between geographic sites, the host races may be recognized as different genotypic entities in sympatry, and perhaps species, a hypothesis requiring future genomic analysis of related sibling species to R. pomonella to test. Our findings concerning the way selection and geography interplay could be of broad significance for many cases of earlier stages of divergence-with-gene flow, including (1) where only modest increases in geographic isolation and the strength of selection may greatly impact genetic coupling and (2) the dynamics of how spatial and temporal standing variation is extracted by selection to generate differences between new and discrete units of biodiversity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...