Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35053620

RESUMO

The major tumor suppressor P53 (TP53) acts primarily as a transcription factor by activating or repressing subsets of its numerous target genes, resulting in different cellular outcomes (e.g., cell cycle arrest, apoptosis and senescence). P53-dependent gene regulation is linked to several aspects of chromatin remodeling; however, regulation of chromatin-modifying enzymes by P53 is poorly understood in hepatocarcinogenesis. Herein, we identified Helicase, lymphoid specific (HELLS), a major epigenetic regulator in liver cancer, as a strong and selective P53 repression target within the SNF2-like helicase family. The underlying regulatory mechanism involved P53-dependent induction of P21 (CDKN1A), leading to repression of Forkhead Box Protein M1 (FOXM1) that in turn resulted in downregulation of HELLS expression. Supporting our in vitro data, we found higher expression of HELLS in murine HCCs arising in a Trp53-/- background compared to Trp53+/+ HCCs as well as a strong and highly significant correlation between HELLS and FOXM1 expression in different HCC patient cohorts. Our data suggest that functional or mutational inactivation of P53 substantially contributes to overexpression of HELLS in HCC patients and indicates a previously unstudied aspect of P53's ability to suppress liver cancer formation.

2.
Macromol Rapid Commun ; 36(2): 224-30, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25284027

RESUMO

Urease-induced calcification is an innovative method to artificially produce highly filled CaCO3-based composite materials by intrinsic mineralization of hydrogels. The mechanical properties of these hybrid materials based on poly(2-hydroxyethylacrylate) cross-linked by triethylene glycol dimethacrylate are poor. Increasing the degree of calcification to up to 94 wt% improves the Young's moduli (YM) of the materials from some 40 MPa to more than 300 MPa. The introduction of calcium carbonate affine groups to the hydrogel matrix by copolymerizing acrylic acid and [2-(methacryloyloxy) ethyl]trimethylammonium chloride, respectively, does not increase the stiffness of the composites. A Young's modulus of more than 1 GPa is achieved by post-polymerization (PP) of the calcified hydrogels, which proves that the size of the contact area between the matrix and calcium carbonate crystals is the most crucial parameter for controlling the stiffness of hybrid materials. Switching from low Tg to high Tg hydrogel matrices (based on poly(N,N-dimethyl acrylamide)) results in a YM of up to 3.5 GPa after PP.


Assuntos
Carbonato de Cálcio/química , Hidrogéis/química , Polimerização , Polímeros/química , Urease/química , Acrilatos/química , Carbonato de Cálcio/metabolismo , Reagentes de Ligações Cruzadas/química , Módulo de Elasticidade , Hidrogéis/síntese química , Hidrogéis/metabolismo , Teste de Materiais , Microscopia Eletrônica de Varredura , Polietilenoglicóis/química , Polímeros/síntese química , Polímeros/metabolismo , Ácidos Polimetacrílicos/química , Urease/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA