Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 11: 1419597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863902

RESUMO

Background: Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme that controls Ca2+ homeostasis and contractility of the heart via dephosphorylation of regulatory proteins. In some genetically modified mouse models with increased arrhythmogenicity, a reduced expression of the regulatory subunit B56α of PP2A was found as a concomitant effect. Whether there is a general correlation between the abundance of B56α and the promotion of cardiac arrhythmogenesis remains unclear. Methods: The aim of this study was therefore to investigate the role of PP2A-B56α in the propensity for arrhythmic activity in the heart. The experimental analysis of this question has been addressed by using a mouse model with deletion of the PP2A-B56α gene, PPP2R5A (KO), in comparison to wild-type animals (WT). Evidence for arrhythmogenicity was investigated in whole animal, isolated heart and cardiomyocytes by ECG, recording of monophasic action potential (MAP) induced by programmed electrical stimulation (PES), measurement of Ca2+ transients under increased pacing frequencies and determination of total K+ channel currents (I K). Results: ECG measurements showed a prolongation of QT time in KO vs. WT. KO mice exhibited a higher rate of premature ventricular contractions in the ECG. MAP measurements in Langendorff-perfused KO hearts showed increased episodes of ventricular tachyarrhythmia induced by PES. However, the KO hearts showed values for MAP duration that were similar to those in WT hearts. In contrast, KO showed more myocardial cells with spontaneous arrhythmogenic Ca2+ transient events compared to WT. The whole-cell patch-clamp technique applied to ventricular cardiomyocytes revealed comparable peak potassium channel current densities between KO and WT. Conclusion: These findings support the assumption that a decrease or even the loss of PP2A-B56α leads to an increased propensity of triggered arrhythmias. This could be based on the increased spontaneous Ca2+ tansients observed.

2.
Materials (Basel) ; 16(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895751

RESUMO

Laser shock peening (LSP) is a mechanical surface treatment process to modify near-surface material properties. Compared to conventional shot peening (SP) the process parameters can be finely adjusted with greater precision and a higher penetration depth of compressive residual stresses could be reached. However, high process times of LSP leads to high production costs. In this study, ultrafast LSP (U-LSP) with an ultrafast laser source (pulse time in the picosecond range) was applied on specimens made of X5CrNiCu15-5 and AlZnMgCu1.5. The surface characteristics (surface roughness) and surface-near properties (microstructure, residual stresses, and phase composition) were compared to the as-delivered condition, to conventional laser shock peening (C-LSP), and to SP, whereas metallographic analyses and X-ray and synchrotron radiation techniques were used. The process time was significantly lower via U-LSP compared to C-LSP. For X5CrNiCu15-5, no significant compressive residual stresses were induced via U-LSP. However, for AlZnMgCu1.5, similar compressive residual stresses were reached via C-LSP and U-LSP; however, with a lower penetration depth. A change in the phase portions in the surface layer of X5CrNiCu15-5 after C-LSP compared to SP were determined.

3.
Adv Exp Med Biol ; 1413: 191-211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37195532

RESUMO

Since the publication of the first lung-on-a-chip in 2010, research has made tremendous progress in mimicking the cellular environment of healthy and diseased alveoli. As the first lung-on-a-chip products have recently reached the market, innovative solutions to even better mimic the alveolar barrier are paving the way for the next generation lung-on-chips. The original polymeric membranes made of PDMS are being replaced by hydrogel membranes made of proteins from the lung extracellular matrix, whose chemical and physical properties exceed those of the original membranes. Other aspects of the alveolar environment are replicated, such as the size of the alveoli, their three-dimensional structure, and their arrangement. By tuning the properties of this environment, the phenotype of alveolar cells can be tuned, and the functions of the air-blood barrier can be reproduced, allowing complex biological processes to be mimicked. Lung-on-a-chip technologies also provide the possibility of obtaining biological information that was not possible with conventional in vitro systems. Pulmonary edema leaking through a damaged alveolar barrier and barrier stiffening due to excessive accumulation of extracellular matrix proteins can now be reproduced. Provided that the challenges of this young technology are overcome, there is no doubt that many application areas will benefit greatly.


Assuntos
Pulmão , Alvéolos Pulmonares , Matriz Extracelular , Dispositivos Lab-On-A-Chip
4.
Cells ; 12(4)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36831217

RESUMO

Viral myocarditis is pathologically associated with RNA viruses such as coxsackievirus B3 (CVB3), or more recently, with SARS-CoV-2, but despite intensive research, clinically proven treatment is limited. Here, by use of a transgenic mouse strain (TG) containing a CVB3ΔVP0 genome we unravel virus-mediated cardiac pathophysiological processes in vivo and in vitro. Cardiac function, pathologic ECG alterations, calcium homeostasis, intracellular organization and gene expression were significantly altered in transgenic mice. A marked alteration of mitochondrial structure and gene expression indicates mitochondrial impairment potentially contributing to cardiac contractile dysfunction. An extended picture on viral myocarditis emerges that may help to develop new treatment strategies and to counter cardiac failure.


Assuntos
COVID-19 , Infecções por Coxsackievirus , Miocardite , Viroses , Camundongos , Animais , Camundongos Transgênicos , Enterovirus Humano B , SARS-CoV-2
5.
Int J Cardiol Heart Vasc ; 44: 101168, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36620202

RESUMO

Aims: Na+/Ca2+ exchanger (NCX) upregulation in cardiac diseases like heart failure promotes as an independent proarrhythmic factor early and delayed afterdepolarizations (EADs/DADs) on the single cell level. Consequently, NCX inhibition protects against EADs and DADs in isolated cardiomyocytes. We here investigate, whether these promising cellular in vitro findings likewise apply to an in vivo setup. Methods/Results: Programmed ventricular stimulation (PVS) and isoproterenol were applied to a murine heterozygous NCX-knockout model (KO) to investigate ventricular arrhythmia initiation and perpetuation compared to wild-type (WT). KO displayed a reduced susceptibility towards isoproterenol-induced premature ventricular complexes. During PVS, initiation of single or double ectopic beats was similar between KO and WT. But strikingly, perpetuation of ventricular tachycardia (VT) was significantly increased in KO (animals with VT - KO: 82 %; WT: 47 %; p = 0.0122 / median number of VTs - KO: 4.5 (1.0, 6.25); WT: 0.0 (0.0, 4.0); p = 0.0039). The median VT duration was prolonged in KO (in s; KO: 0.38 (0.19, 0.96); WT: 0.0 (0.0, 0.60); p = 0.0239). The ventricular refractory period (VRP) was shortened in KO (in ms; KO: 15.1 ± 0.7; WT: 18.7 ± 0.7; p = 0.0013). Conclusions: Not the initiation, but the perpetuation of provoked whole-heart in vivo ventricular arrhythmia was increased in KO. As a potential mechanism, we found a significantly reduced VRP, which may promote perpetuation of reentrant ventricular arrhythmia. On a translational perspective, the antiarrhythmic concept of therapeutic NCX inhibition seems to be ambivalent by protecting from initiating afterdepolarizations but favoring arrhythmia perpetuation in vivo at least in a murine model.

6.
J Biol Chem ; 298(9): 102362, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35963431

RESUMO

The activity of protein phosphatase 2A (PP2A) is determined by the expression and localization of the regulatory B-subunits. PP2A-B56α is the dominant isoform of the B'-family in the heart. Its role in regulating the cardiac response to ß-adrenergic stimulation is not yet fully understood. We therefore generated mice deficient in B56α to test the functional cardiac effects in response to catecholamine administration versus corresponding WT mice. We found the decrease in basal PP2A activity in hearts of KO mice was accompanied by a counter-regulatory increase in the expression of B' subunits (ß and γ) and higher phosphorylation of sarcoplasmic reticulum Ca2+ regulatory and myofilament proteins. The higher phosphorylation levels were associated with enhanced intraventricular pressure and relaxation in catheterized KO mice. In contrast, at the cellular level, we detected depressed Ca2+ transient and sarcomere shortening parameters in KO mice at basal conditions. Consistently, the peak amplitude of the L-type Ca2+ current was reduced and the inactivation kinetics of ICaL were prolonged in KO cardiomyocytes. However, we show ß-adrenergic stimulation resulted in a comparable peak amplitude of Ca2+ transients and myocellular contraction between KO and WT cardiomyocytes. Therefore, we propose higher isoprenaline-induced Ca2+ spark frequencies might facilitate the normalized Ca2+ signaling in KO cardiomyocytes. In addition, the application of isoprenaline was associated with unchanged L-type Ca2+ current parameters between both groups. Our data suggest an important influence of PP2A-B56α on the regulation of Ca2+ signaling and contractility in response to ß-adrenergic stimulation in the myocardium.


Assuntos
Adrenérgicos , Proteína Fosfatase 2 , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia , Animais , Cálcio/metabolismo , Isoproterenol/farmacologia , Camundongos , Camundongos Knockout , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Retículo Sarcoplasmático/metabolismo
7.
Cells ; 9(10)2020 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081014

RESUMO

Macroautophagy is a conserved degradative process for maintaining cellular homeostasis and plays a key role in aging and various human disorders. The microtubule-associated protein 1A/1B light chain 3B (MAP1LC3B or LC3B) is commonly analyzed as a key marker for autophagosomes and as a proxy for autophagic flux. Three paralogues of the LC3 gene exist in humans: LC3A, LC3B and LC3C. The molecular function, regulation and cellular localization of LC3A and LC3C have not been investigated frequently, even if a similar function to that described for LC3B appears likely. Here, we have selectively decapacitated LC3B by three separate strategies in primary human fibroblasts and analyzed the evoked effects on LC3A, LC3B and LC3C in terms of their cellular distribution and co-localization with p62, a ubiquitin and autophagy receptor. First, treatment with pharmacological sirtuin 1 (SIRT1) inhibitors to prevent the translocation of LC3B from the nucleus into the cytosol induced an increase in cytosolic LC3C, a heightened co-localization of LC3C with p62, and an increase LC3C-dependent autophagic flux as assessed by protein lipidation. Cytosolic LC3A, however, was moderately reduced, but also more co-localized with p62. Second, siRNA-based knock-down of SIRT1 broadly reproduced these findings and increased the co-localization of LC3A and particularly LC3C with p62 in presumed autophagosomes. These effects resembled the effects of pharmacological sirtuin inhibition under normal and starvation conditions. Third, siRNA-based knock-down of total LC3B in cytosol and nucleus also induced a redistribution of LC3C as if to replace LC3B in the nucleus, but only moderately affected LC3A. Total protein expression of LC3A, LC3B, LC3C, GABARAP and GABARAP-L1 following LC3B decapacitation was unaltered. Our data indicate that nuclear trapping and other causes of LC3B functional loss in the cytosol are buffered by LC3A and actively compensated by LC3C, but not by GABARAPs. The biological relevance of the potential functional compensation of LC3B decapacitation by LC3C and LC3A warrants further study.


Assuntos
Autofagossomos/metabolismo , Fibroblastos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Sequência de Aminoácidos , Especificidade de Anticorpos/imunologia , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Sítios de Ligação , Linhagem Celular , Núcleo Celular/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Lipídeos/química , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Filogenia , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Sirtuínas/metabolismo , Frações Subcelulares/metabolismo
8.
FASEB J ; 34(8): 11272-11291, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32602979

RESUMO

ICER (inducible cAMP early repressor) isoforms are transcriptional repressors encoded by the Crem (cAMP responsive element modulator) gene. They were linked to the regulation of a multitude of cellular processes and pathophysiological mechanisms. Here, we show for the first time that two independent induction patterns for CREM repressor isoforms exist in the heart, namely for ICER and smICER (small ICER), which are induced in response to ß-adrenergic stimulation in a transient- and saturation-like manner, respectively. This time-shifted induction pattern, driven by two internal promoters in the Crem gene, leads to the predominant transcription of smIcer after prolonged ß-adrenergic stimulation. Using an ICER knockout mouse model with preserved smICER induction, we show that the transient-like induction of Icer itself has minor effects on gene regulation, cardiac hypertrophy or contractile function in the heart. We conclude that the functions previously linked to ICER may be rather attributed to smICER, also beyond the cardiac background.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Modulador de Elemento de Resposta do AMP Cíclico/genética , Receptores Adrenérgicos beta/genética , Animais , Cardiomegalia/tratamento farmacológico , Linhagem Celular , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Células HEK293 , Coração/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
9.
J Orthop ; 18: 255-260, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32082036

RESUMO

PURPOSE: This study evaluated the clinical outcome of non-operative treatment of peroneal tendon dislocations. METHODS: A systematic review of literature was performed. RESULTS: Six studies were included. Redislocation rates differed between treatments: taping ≥ 3 weeks; 18/30 (60%) patients. Plaster cast ≥ 4 weeks; 5/13 (32%) plaster cast ≥ 6 weeks; 1/6 (17%). Strapping or taping treatment indicated a higher rate of pain and instability and a lower rate of ability to return to former activity. CONCLUSIONS: A non-weight bearing cast ≥ 6 weeks was successful in 5/6 patients. A non-weight bearing cast might be a good alternative for surgical intervention.Level of Clinical Evidence: Level IV, systematic review of level IV studies.

11.
Circ Arrhythm Electrophysiol ; 12(3): e007071, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30879335

RESUMO

BACKGROUND: A structural, electrical and metabolic atrial remodeling is central in the development of atrial fibrillation (AF) contributing to its initiation and perpetuation. In the heart, HDACs (histone deacetylases) control remodeling associated processes like hypertrophy, fibrosis, and energy metabolism. Here, we analyzed, whether the HDAC class I/IIa inhibitor valproic acid (VPA) is able to attenuate atrial remodeling in CREM-IbΔC-X (cAMP responsive element modulator isoform IbΔC-X) transgenic mice, a mouse model of extensive atrial remodeling with age-dependent progression from spontaneous atrial ectopy to paroxysmal and finally long-lasting AF. METHODS: VPA was administered for 7 or 25 weeks to transgenic and control mice. Atria were analyzed macroscopically and using widefield and electron microscopy. Action potentials were recorded from atrial cardiomyocytes using patch-clamp technique. ECG recordings documented the onset of AF. A proteome analysis with consecutive pathway mapping identified VPA-mediated proteomic changes and related pathways. RESULTS: VPA attenuated many components of atrial remodeling that are present in transgenic mice, animal AF models, and human AF. VPA significantly ( P<0.05) reduced atrial dilatation, cardiomyocyte enlargement, atrial fibrosis, and the disorganization of myocyte's ultrastructure. It significantly reduced the occurrence of atrial thrombi, reversed action potential alterations, and finally delayed the onset of AF by 4 to 8 weeks. Increased histone H4-acetylation in atria from VPA-treated transgenic mice verified effective in vivo HDAC inhibition. Cardiomyocyte-specific genetic inactivation of HDAC2 in transgenic mice attenuated the ultrastructural disorganization of myocytes comparable to VPA. Finally, VPA restrained dysregulation of proteins in transgenic mice that are involved in a multitude of AF relevant pathways like oxidative phosphorylation or RhoA (Ras homolog gene family, member A) signaling and disease functions like cardiac fibrosis and apoptosis of muscle cells. CONCLUSIONS: Our results suggest that VPA, clinically available, well-tolerated, and prescribed to many patients for years, has the therapeutic potential to delay the development of atrial remodeling and the onset of AF in patients at risk.


Assuntos
Antiarrítmicos/farmacologia , Fibrilação Atrial/prevenção & controle , Remodelamento Atrial/efeitos dos fármacos , Átrios do Coração/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Ácido Valproico/farmacologia , Potenciais de Ação , Animais , Fibrilação Atrial/enzimologia , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Modulador de Elemento de Resposta do AMP Cíclico/genética , Modelos Animais de Doenças , Átrios do Coração/enzimologia , Átrios do Coração/fisiopatologia , Átrios do Coração/ultraestrutura , Frequência Cardíaca , Masculino , Camundongos Transgênicos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/ultraestrutura , Fatores de Tempo
12.
Fundam Clin Pharmacol ; 33(1): 43-51, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30092622

RESUMO

Administration of digitalis in heart failure (HF) increases quality of life but does not carry a prognostic benefit. Digitalis is an indirect inhibitor of the Na+ /Ca2+ exchanger (NCX), which is overexpressed in HF. We therefore used the cardiac glycoside ouabain in Ca2+ imaging experiments and patch-clamp experiments in isolated ventricular myocytes from nonfailing transgenic NCX overexpressor mice (OE). In field-stimulated myocytes, ouabain (1-100 µm) increased the amplitude of the Ca2+ transient in OE and wild-type (WT) similarly. Ouabain-mediated spontaneous Ca2+ -activity was significantly more pronounced in OE compared to WT myocytes at higher concentrations (100 µm). Also, at very high concentrations (1000 µm) of ouabain, the number of cells with hypercontraction leading to cell death was higher in OE. Ouabain (10 µm) shortened the action potential duration in both genotypes. Our findings suggest that the proarrhythmic but not the inotropic effects of cardiac glycosides are enhanced by increased NCX expression. This may offer an explanation for the observed lack of prognostic benefit but increased quality of life in HF, which is accompanied by NCX upregulation.


Assuntos
Cálcio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Ouabaína/administração & dosagem , Trocador de Sódio e Cálcio/genética , Potenciais de Ação/efeitos dos fármacos , Animais , Cardiotônicos/administração & dosagem , Cardiotônicos/farmacologia , Relação Dose-Resposta a Droga , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ouabaína/farmacologia , Técnicas de Patch-Clamp , Qualidade de Vida
13.
J Mol Cell Cardiol ; 125: 195-204, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30389400

RESUMO

RATIONALE: A higher expression/activity of type 1 serine/threonine protein phosphatase 1 (PP1) may contribute to dephosphorylation of cardiac regulatory proteins triggering the development of heart failure. OBJECTIVE: Here, we tested the putatively protective effects of PP1 inhibitor-2 (I2) overexpression using a heart failure model induced by chronic ß-adrenergic stimulation. METHODS AND RESULTS: Transgenic (TG) and wild-type (WT) mice were subjected to isoprenaline (ISO) or isotonic NaCl solution supplied via osmotic minipumps for 7 days. I2 overexpression was associated with a depressed PP1 activity. Basal contractility was unchanged in catheterized mice and isolated cardiomyocytes between TGNaCl and WTNaCl. TGISO mice exhibited more fibrosis and a higher expression of hypertrophy marker proteins as compared to WTISO. After acute administration of ISO, the contractile response was accompanied by a higher sensitivity in TGISO as compared to WTISO. In contrast to basal contractility, the peak amplitude of [Ca]i and SR Ca load were reduced in TGNaCl as compared to WTNaCl. These effects were normalized to WT levels after chronic ISO stimulation. Cardiomyocyte relaxation and [Ca]i decay kinetics were hastened in TGISO as compared to WTISO, which can be explained by a higher phospholamban phosphorylation at Ser16. Chronic catecholamine stimulation was followed by an enhanced expression of GSK3ß, whereas the phosphorylation at Ser9 was lower in TG as compared to the corresponding WT group. This resulted in a higher I2 phosphorylation that may reactivate PP1. CONCLUSION: Our findings suggest that the basal desensitization of ß-adrenergic signaling and the depressed Ca handling in TG by inhibition of PP1 is restored by a GSK3ß-dependent phosphorylation of I2.


Assuntos
Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Oncogênicas/metabolismo , Proteína Fosfatase 1/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA , Insuficiência Cardíaca/metabolismo , Chaperonas de Histonas , Humanos , Isoproterenol/farmacologia , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Sarcômeros/efeitos dos fármacos , Sarcômeros/genética , Cloreto de Sódio/farmacologia
14.
Front Pharmacol ; 9: 933, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186171

RESUMO

Background: Principal mechanisms of arrhythmia have been derived from ventricular but not atrial cardiomyocytes of animal models despite higher prevalence of atrial arrhythmia (e.g., atrial fibrillation). Due to significant ultrastructural and functional differences, a simple transfer of ventricular proneness toward arrhythmia to atrial arrhythmia is critical. The use of murine models in arrhythmia research is widespread, despite known translational limitations. We here directly compare atrial and ventricular mechanisms of arrhythmia to identify critical differences that should be considered in murine models for development of antiarrhythmic strategies for atrial arrhythmia. Methods and Results: Isolated murine atrial and ventricular myocytes were analyzed by wide field microscopy and subjected to a proarrhythmic protocol during patch-clamp experiments. As expected, the spindle shaped atrial myocytes showed decreased cell area and membrane capacitance compared to the rectangular shaped ventricular myocytes. Though delayed afterdepolarizations (DADs) could be evoked in a similar fraction of both cell types (80% of cells each), these led significantly more often to the occurrence of spontaneous action potentials (sAPs) in ventricular myocytes. Interestingly, numerous early afterdepolarizations (EADs) were observed in the majority of ventricular myocytes, but there was no EAD in any atrial myocyte (EADs per cell; atrial myocytes: 0 ± 0; n = 25/12 animals; ventricular myocytes: 1.5 [0-43]; n = 20/12 animals; p < 0.05). At the same time, the action potential duration to 90% decay (APD90) was unaltered and the APD50 even increased in atrial versus ventricular myocytes. However, the depolarizing L-type Ca2+ current (ICa) and Na+/Ca2+-exchanger inward current (INCX) were significantly smaller in atrial versus ventricular myocytes. Conclusion: In mice, atrial myocytes exhibit a substantially distinct occurrence of proarrhythmic afterdepolarizations compared to ventricular myocytes, since they are in a similar manner susceptible to DADs but interestingly seem to be protected against EADs and show less sAPs. Key factors in the generation of EADs like ICa and INCX were significantly reduced in atrial versus ventricular myocytes, which may offer a mechanistic explanation for the observed protection against EADs. These findings may be of relevance for current studies on atrial level in murine models to develop targeted strategies for the treatment of atrial arrhythmia.

15.
Basic Res Cardiol ; 113(4): 27, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29881975

RESUMO

Understanding molecular mechanisms involved in atrial tissue remodeling and arrhythmogenesis in atrial fibrillation (AF) is essential for developing specific therapeutic approaches. Two-pore-domain potassium (K2P) channels modulate cellular excitability, and TASK-1 (K2P3.1) currents were recently shown to alter atrial action potential duration in AF and heart failure (HF). Finding animal models of AF that closely resemble pathophysiological alterations in human is a challenging task. This study aimed to analyze murine cardiac expression patterns of K2P channels and to assess modulation of K2P channel expression in murine models of AF and HF. Expression of cardiac K2P channels was quantified by real-time qPCR and immunoblot in mouse models of AF [cAMP-response element modulator (CREM)-IbΔC-X transgenic animals] or HF (cardiac dysfunction induced by transverse aortic constriction, TAC). Cloned murine, human, and porcine TASK-1 channels were heterologously expressed in Xenopus laevis oocytes. Two-electrode voltage clamp experiments were used for functional characterization. In murine models, among members of the K2P channel family, TASK-1 expression displayed highest levels in both atrial and ventricular tissue samples. Furthermore, K2P2.1, K2P5.1, and K2P6.1 showed significant expression levels. In CREM-transgenic mice, atrial expression of TASK-1 was significantly reduced in comparison with wild-type animals. In a murine model of TAC-induced pressure overload, ventricular TASK-1 expression remained unchanged, while atrial TASK-1 levels were significantly downregulated. When heterologously expressed in Xenopus oocytes, currents of murine, porcine, and human TASK-1 displayed similar characteristics. TASK-1 channels display robust cardiac expression in mice. Murine, porcine, and human TASK-1 channels share functional similarities. Dysregulation of atrial TASK-1 expression in murine AF and HF models suggests a mechanistic contribution to arrhythmogenesis.


Assuntos
Fibrilação Atrial/metabolismo , Remodelamento Atrial , Átrios do Coração/metabolismo , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Remodelação Ventricular , Potenciais de Ação , Animais , Fibrilação Atrial/genética , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Clonagem Molecular , Modelos Animais de Doenças , Feminino , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Oócitos , Canais de Potássio de Domínios Poros em Tandem/genética , Transdução de Sinais , Sus scrofa , Remodelação Ventricular/efeitos dos fármacos , Xenopus laevis
16.
Front Pharmacol ; 8: 649, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28983248

RESUMO

Background/Objective: The cardiac Na+/Ca2+ exchanger (NCX) has been identified as a promising target to counter arrhythmia in previous studies investigating the benefit of NCX inhibition. However, the consequences of NCX inhibition have not been investigated in the setting of altered NCX expression and function, which is essential, since major cardiac diseases (heart failure/atrial fibrillation) exhibit NCX upregulation. Thus, we here investigated the effects of the NCX inhibitor SEA0400 on the Ca2+ transient amplitude and on proarrhythmia in homozygous NCX overexpressor (OE) and heterozygous NCX knockout (hetKO) mice compared to corresponding wild-types (WTOE/WThetKO). Methods/Results: Ca2+ transients of field-stimulated isolated ventricular cardiomyocytes were recorded with fluo-4-AM or indo-1-AM. SEA0400 (1 µM) significantly reduced NCX forward mode function in all mouse lines. SEA0400 (1 µM) significantly increased the amplitude of field-stimulated Ca2+ transients in WTOE, WThetKO, and hetKO, but not in OE (% of basal; OE = 98.7 ± 5.0; WTOE = 137.8 ± 5.2*; WThetKO = 126.3 ± 6.0*; hetKO = 140.6 ± 12.8*; *p < 0.05 vs. basal). SEA0400 (1 µM) significantly reduced the number of proarrhythmic spontaneous Ca2+ transients (sCR) in OE, but increased it in WTOE, WThetKO and hetKO (sCR per cell; basal/+SEA0400; OE = 12.5/3.7; WTOE = 0.2/2.4; WThetKO = 1.3/8.8; hetKO = 0.2/5.5) and induced Ca2+ overload with subsequent cell death in hetKO. Conclusion: The effects of SEA0400 on Ca2+ transient amplitude and the occurrence of spontaneous Ca2+ transients as a proxy measure for inotropy and cellular proarrhythmia depend on the NCX expression level. The antiarrhythmic effect of SEA0400 in conditions of increased NCX expression promotes the therapeutic concept of NCX inhibition in heart failure/atrial fibrillation. Conversely, in conditions of reduced NCX expression, SEA0400 suppressed the NCX function below a critical level leading to adverse Ca2+ accumulation as reflected by an increase in Ca2+ transient amplitude, proarrhythmia and cell death. Thus, the remaining NCX function under inhibition may be a critical factor determining the inotropic and antiarrhythmic efficacy of SEA0400.

17.
Opt Express ; 25(17): 20502-20510, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041730

RESUMO

We demonstrate nonlinear pulse compression by multi-pass cell spectral broadening (MPCSB) from 860 fs to 115 fs with compressed pulse energy of 7.5 µJ, average power of 300 W and close to diffraction-limited beam quality. The transmission of the compression unit is >90%. The results show that this recently introduced compression scheme for peak powers above the threshold for catastrophic self-focusing can be scaled to smaller pulse energies and can achieve a larger compression factor than previously reported. Good homogeneity of the spectral broadening across the beam profile is verified, which distinguishes MPCSB among other bulk compression schemes.

18.
Opt Lett ; 42(11): 2118-2121, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569860

RESUMO

We generate narrowband terahertz (THz) radiation in periodically poled lithium niobate (PPLN) crystals using two chirped-and-delayed driver pulses from a high-energy Ti:sapphire laser. The generated frequency is determined by the phase-matching condition in the PPLN and influences the temporal delay of the two pulses for efficient terahertz generation. We achieve internal conversion efficiencies up to 0.13% as well as a record multicycle THz energy of 40 µJ at 0.544 THz in a cryogenically cooled PPLN.

19.
Prog Biophys Mol Biol ; 130(Pt B): 233-243, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28526353

RESUMO

Two-pore-domain potassium (K2P) channels modulate cellular excitability. The significance of stretch-activated cardiac K2P channels (K2P2.1, TREK-1, KCNK2; K2P4.1, TRAAK, KCNK4; K2P10.1, TREK-2, KCNK10) in heart disease has not been elucidated in detail. The aim of this work was to assess expression and remodeling of mechanosensitive K2P channels in atrial fibrillation (AF) and heart failure (HF) patients in comparison to murine models. Cardiac K2P channel levels were quantified in atrial (A) and ventricular (V) tissue obtained from patients undergoing open heart surgery. In addition, control mice and mouse models of AF (cAMP-response element modulator (CREM)-IbΔC-X transgenic animals) or HF (cardiac dysfunction induced by transverse aortic constriction, TAC) were employed. Human and murine KCNK2 displayed highest mRNA abundance among mechanosensitive members of the K2P channel family (V > A). Disease-associated K2P2.1 remodeling was studied in detail. In patients with impaired left ventricular function, atrial KCNK2 (K2P2.1) mRNA and protein expression was significantly reduced. In AF subjects, downregulation of atrial and ventricular KCNK2 (K2P2.1) mRNA and protein levels was observed. AF-associated suppression of atrial Kcnk2 (K2P2.1) mRNA and protein was recapitulated in CREM-transgenic mice. Ventricular Kcnk2 expression was not significantly altered in mouse models of disease. In conclusion, mechanosensitive K2P2.1 and K2P10.1 K+ channels are expressed throughout the heart. HF- and AF-associated downregulation of KCNK2 (K2P2.1) mRNA and protein levels suggest a mechanistic contribution to cardiac arrhythmogenesis.


Assuntos
Fibrilação Atrial/metabolismo , Insuficiência Cardíaca/metabolismo , Fenômenos Mecânicos , Miocárdio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Idoso , Fibrilação Atrial/genética , Fenômenos Biomecânicos , Regulação para Baixo , Feminino , Insuficiência Cardíaca/genética , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/genética , Conformação Proteica , Transporte Proteico , Regulação para Cima
20.
Opt Lett ; 41(19): 4511-4514, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27749868

RESUMO

We demonstrate a scheme for nonlinear pulse compression at high average powers based on self-phase modulation in a multi-pass cell using fused silica as the nonlinear medium. The scheme is suitable for compression of pulses with peak powers exceeding the threshold for critical self-focusing. At >400 W of input power, the pulses of a Yb:YAG-Innoslab laser system (10 MHz repetition rate, 850 fs pulse duration) are spectrally broadened from 1.6 to >13.5 nm bandwidth while maintaining almost diffraction-limited beam quality. The chirp is removed with a dispersive mirror compressor, and pulse durations of 170 fs at an output power of 375 W are achieved. The compression unit reaches an overall transmission of >90%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA