Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2788, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555356

RESUMO

Hospital-acquired pneumonia (HAP) is associated with high mortality and costs, and frequently caused by multidrug-resistant (MDR) bacteria. Although prior antimicrobial therapy is a major risk factor for HAP, the underlying mechanism remains incompletely understood. Here, we demonstrate that antibiotic therapy in hospitalized patients is associated with decreased diversity of the gut microbiome and depletion of short-chain fatty acid (SCFA) producers. Infection experiments with mice transplanted with patient fecal material reveal that these antibiotic-induced microbiota perturbations impair pulmonary defense against MDR Klebsiella pneumoniae. This is dependent on inflammatory monocytes (IMs), whose fatty acid receptor (FFAR)2/3-controlled and phagolysosome-dependent antibacterial activity is compromized in mice transplanted with antibiotic-associated patient microbiota. Collectively, we characterize how clinically relevant antibiotics affect antimicrobial defense in the context of human microbiota, and reveal a critical impairment of IM´s antimicrobial activity. Our study provides additional arguments for the rational use of antibiotics and offers mechanistic insights for the development of novel prophylactic strategies to protect high-risk patients from HAP.


Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Camundongos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Monócitos , Anti-Infecciosos/farmacologia , Klebsiella pneumoniae , Pulmão
2.
Cell ; 186(12): 2690-2704.e20, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295405

RESUMO

Biofilm formation is generally recognized as a bacterial defense mechanism against environmental threats, including antibiotics, bacteriophages, and leukocytes of the human immune system. Here, we show that for the human pathogen Vibrio cholerae, biofilm formation is not only a protective trait but also an aggressive trait to collectively predate different immune cells. We find that V. cholerae forms biofilms on the eukaryotic cell surface using an extracellular matrix comprising primarily mannose-sensitive hemagglutinin pili, toxin-coregulated pili, and the secreted colonization factor TcpF, which differs from the matrix composition of biofilms on other surfaces. These biofilms encase immune cells and establish a high local concentration of a secreted hemolysin to kill the immune cells before the biofilms disperse in a c-di-GMP-dependent manner. Together, these results uncover how bacteria employ biofilm formation as a multicellular strategy to invert the typical relationship between human immune cells as the hunters and bacteria as the hunted.


Assuntos
Vibrio cholerae , Animais , Humanos , Vibrio cholerae/metabolismo , Comportamento Predatório , Biofilmes , Fímbrias Bacterianas , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
Cell Commun Signal ; 21(1): 65, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978183

RESUMO

Gram-negative bacteria naturally secrete nano-sized outer membrane vesicles (OMVs), which are important mediators of communication and pathogenesis. OMV uptake by host cells activates TLR signalling via transported PAMPs. As important resident immune cells, alveolar macrophages are located at the air-tissue interface where they comprise the first line of defence against inhaled microorganisms and particles. To date, little is known about the interplay between alveolar macrophages and OMVs from pathogenic bacteria. The immune response to OMVs and underlying mechanisms are still elusive. Here, we investigated the response of primary human macrophages to bacterial vesicles (Legionella pneumophila, Klebsiella pneumoniae, Escherichia coli, Salmonella enterica, Streptococcus pneumoniae) and observed comparable NF-κB activation across all tested vesicles. In contrast, we describe differential type I IFN signalling with prolonged STAT1 phosphorylation and strong Mx1 induction, blocking influenza A virus replication only for Klebsiella, E.coli and Salmonella OMVs. OMV-induced antiviral effects were less pronounced for endotoxin-free Clear coli OMVs and Polymyxin-treated OMVs. LPS stimulation could not mimic this antiviral status, while TRIF knockout abrogated it. Importantly, supernatant from OMV-treated macrophages induced an antiviral response in alveolar epithelial cells (AEC), suggesting OMV-induced intercellular communication. Finally, results were validated in an ex vivo infection model with primary human lung tissue. In conclusion, Klebsiella, E.coli and Salmonella OMVs induce antiviral immunity in macrophages via TLR4-TRIF-signaling to reduce viral replication in macrophages, AECs and lung tissue. These gram-negative bacteria induce antiviral immunity in the lung through OMVs, with a potential decisive and tremendous impact on bacterial and viral coinfection outcome. Video Abstract.


Assuntos
Vesículas Extracelulares , Receptor 4 Toll-Like , Humanos , Proteínas Adaptadoras de Transporte Vesicular , Escherichia coli , Macrófagos , Replicação Viral
5.
Cell Genom ; 3(2): 100232, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36474914

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes severe COVID-19 in some patients and mild COVID-19 in others. Dysfunctional innate immune responses have been identified to contribute to COVID-19 severity, but the key regulators are still unknown. Here, we present an integrative single-cell multi-omics analysis of peripheral blood mononuclear cells from hospitalized and convalescent COVID-19 patients. In classical monocytes, we identified genes that were potentially regulated by differential chromatin accessibility. Then, sub-clustering and motif-enrichment analyses revealed disease condition-specific regulation by transcription factors and their targets, including an interaction between C/EBPs and a long-noncoding RNA LUCAT1, which we validated through loss-of-function experiments. Finally, we investigated genetic risk variants that exhibit allele-specific open chromatin (ASoC) in COVID-19 patients and identified a SNP rs6800484-C, which is associated with lower expression of CCR2 and may contribute to higher viral loads and higher risk of COVID-19 hospitalization. Altogether, our study highlights the diverse genetic and epigenetic regulators that contribute to COVID-19.

6.
Proc Natl Acad Sci U S A ; 119(36): e2120680119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35998224

RESUMO

The systemic immune response to viral infection is shaped by master transcription factors, such as NF-κB, STAT1, or PU.1. Although long noncoding RNAs (lncRNAs) have been suggested as important regulators of transcription factor activity, their contributions to the systemic immunopathologies observed during SARS-CoV-2 infection have remained unknown. Here, we employed a targeted single-cell RNA sequencing approach to reveal lncRNAs differentially expressed in blood leukocytes during severe COVID-19. Our results uncover the lncRNA PIRAT (PU.1-induced regulator of alarmin transcription) as a major PU.1 feedback-regulator in monocytes, governing the production of the alarmins S100A8/A9, key drivers of COVID-19 pathogenesis. Knockout and transgene expression, combined with chromatin-occupancy profiling, characterized PIRAT as a nuclear decoy RNA, keeping PU.1 from binding to alarmin promoters and promoting its binding to pseudogenes in naïve monocytes. NF-κB-dependent PIRAT down-regulation during COVID-19 consequently releases a transcriptional brake, fueling alarmin production. Alarmin expression is additionally enhanced by the up-regulation of the lncRNA LUCAT1, which promotes NF-κB-dependent gene expression at the expense of targets of the JAK-STAT pathway. Our results suggest a major role of nuclear noncoding RNA networks in systemic antiviral responses to SARS-CoV-2 in humans.


Assuntos
COVID-19 , Regulação da Expressão Gênica , Monócitos , RNA Longo não Codificante , SARS-CoV-2 , Alarminas/genética , COVID-19/genética , COVID-19/imunologia , Humanos , Janus Quinases/genética , Monócitos/imunologia , NF-kappa B/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA-Seq , SARS-CoV-2/imunologia , Fatores de Transcrição STAT/genética , Transdução de Sinais/genética , Análise de Célula Única
7.
Wiley Interdiscip Rev RNA ; 12(6): e1664, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33989449

RESUMO

Infectious and inflammatory diseases remain major causes of mortality and morbidity worldwide. To combat bacterial infections, the mammalian immune system employs a myriad of regulators, which secure the effective initiation of inflammatory responses while preventing pathologies due to overshooting immunity. Recently, the human genome has been shown to be pervasively transcribed and to generate thousands of still poorly characterized long noncoding RNAs (lncRNAs). A growing body of literature suggests that lncRNAs play important roles in the regulatory circuitries controlling innate and adaptive immune responses to bacterial pathogens. This review provides an overview of the roles of lncRNAs in the interaction of human and rodent host cells with bacterial pathogens. Further decoding of the lncRNA networks that underlie pathological inflammation and immune subversion could provide new insights into the host cell mechanisms and microbial strategies that determine the outcome of bacterial infections. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.


Assuntos
Infecções Bacterianas , RNA Longo não Codificante , Animais , Bactérias/genética , Infecções Bacterianas/genética , Regulação da Expressão Gênica , Imunidade Inata , RNA Longo não Codificante/genética
8.
Cancer Immunol Res ; 9(6): 682-692, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33707310

RESUMO

Apart from the constitutive proteasome, the immunoproteasome that comprises the three proteolytic subunits LMP2, MECL-1, and LMP7 is expressed in most immune cells. In this study, we describe opposing roles for immunoproteasomes in regulating the tumor microenvironment (TME). During chronic inflammation, immunoproteasomes modulated the expression of protumorigenic cytokines and chemokines and enhanced infiltration of innate immune cells, thus triggering the onset of colitis-associated carcinogenesis (CAC) in wild-type mice. Consequently, immunoproteasome-deficient animals (LMP2/MECL-1/LMP7-null mice) were almost completely resistant to CAC development. In patients with ulcerative colitis with high risk for CAC, immunoproteasome-induced protumorigenic mediators were upregulated. In melanoma tumors, the role of immunoproteasomes is relatively unknown. We found that high expression of immunoproteasomes in human melanoma was associated with better prognosis. Similarly, our data revealed that the immunoproteasome has antitumorigenic activity in a mouse model of melanoma. The antitumor immunity against melanoma was compromised in immunoproteasome-deficient mice because of the impaired activity of CD8+ CTLs, CD4+ Th1 cells, and antigen-presenting cells. These findings show that immunoproteasomes may exert opposing roles with either pro- or antitumoral properties in a context-dependent manner.


Assuntos
Cisteína Endopeptidases/metabolismo , Melanoma Experimental/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/imunologia , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Colite/patologia , Cisteína Endopeptidases/deficiência , Cisteína Endopeptidases/genética , Citocinas/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/genética , Linfócitos T Citotóxicos/metabolismo
9.
RNA Biol ; 18(5): 604-618, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33622174

RESUMO

A persisting obstacle in human immunology is that blood-derived leukocytes are notoriously difficult to manipulate at the RNA level. Therefore, our knowledge about immune-regulatory RNA-networks is largely based on tumour cell-line and rodent knockout models, which do not fully mimic human leukocyte biology. Here, we exploit straightforward cell penetrating peptide (CPP) chemistry to enable efficient loss-of-function phenotyping of regulatory RNAs in primary human blood-derived cells. The classical CPP octaarginine (R8) enabled antisense peptide-nucleic-acid (PNA) oligomer delivery into nearly 100% of human blood-derived macrophages without apparent cytotoxicity even up to micromolar concentrations. In a proof-of-principle experiment, we successfully de-repressed the global microRNA-155 regulome in primary human macrophages using a PNA-R8 oligomer, which phenocopies a CRISPR-Cas9 induced gene knockout. Interestingly, although it is often believed that fairly high concentrations (µM) are needed to achieve antisense activity, our PNA-R8 was effective at 200 nM. RNA-seq characterized microRNA-155 as a broad-acting riboregulator, feedback restraining a late myeloid differentiation-induced pro-inflammatory network, comprising MyD88-signalling and ubiquitin-proteasome components. Our results highlight the important role of the microRNA machinery in fine-control of blood-derived human phagocyte immunity and open the door for further studies on regulatory RNAs in difficult-to-transfect primary human immune cells.


Assuntos
Inflamação/genética , MicroRNAs/fisiologia , Oligonucleotídeos Antissenso/farmacologia , Fagócitos/efeitos dos fármacos , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Inflamação/metabolismo , MicroRNAs/genética , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Células Mieloides/fisiologia , Fagócitos/imunologia , Fagócitos/metabolismo , Cultura Primária de Células , Interferência de RNA/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Células U937
10.
RNA Biol ; 18(5): 587-603, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33138685

RESUMO

The innate immune system relies on a germ-line-encoded repertoire of pattern recognition receptors (PRRs), activated by deeply conserved pathogen signatures, such as bacterial cell wall components or foreign nucleic acids. To enable effective defence against invading pathogens and prevent from deleterious inflammation, PRR-driven immune responses are tightly controlled by a dense network of nuclear and cytoplasmic regulators. Long non-coding RNAs (lncRNAs) are increasingly recognized as important components of these regulatory circuitries, providing positive and negative control of PRR-induced innate immune responses. The present review provides an overview of the presently known roles of lncRNAs in human and murine innate antiviral and antibacterial immunity. The emerging roles in host defence and inflammation suggest that further mechanistic insights into the cellular functions of lncRNAs will decisively advance our molecular understanding of immune-associated diseases and open new avenues for therapeutic intervention.


Assuntos
Imunidade Inata/genética , Inflamação/genética , RNA Longo não Codificante/fisiologia , Animais , Humanos , Inflamação/imunologia , Camundongos , Transdução de Sinais/genética , Transdução de Sinais/imunologia
11.
Front Genet ; 11: 527484, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329688

RESUMO

The classic understanding of molecular disease-mechanisms is largely based on protein-centric models. During the past decade however, genetic studies have identified numerous disease-loci in the human genome that do not encode proteins. Such non-coding DNA variants increasingly gain attention in diagnostics and personalized medicine. Of particular interest are long non-coding RNA (lncRNA) genes, which generate transcripts longer than 200 nucleotides that are not translated into proteins. While most of the estimated ~20,000 lncRNAs currently remain of unknown function, a growing number of genetic studies link lncRNA gene aberrations with the development of human diseases, including diabetes, AIDS, inflammatory bowel disease, or cancer. This suggests that the protein-centric view of human diseases does not capture the full complexity of molecular patho-mechanisms, with important consequences for molecular diagnostics and therapy. This review illustrates well-documented lncRNA gene aberrations causatively linked to human diseases and discusses potential lessons for molecular disease models, diagnostics, and therapy.

12.
Noncoding RNA ; 6(4)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182489

RESUMO

While the important functions of long noncoding RNAs (lncRNAs) in nuclear organization are well documented, their orchestrating and architectural roles in the cytoplasmic environment have long been underestimated. However, recently developed fractionation and proximity labelling approaches have shown that a considerable proportion of cellular lncRNAs is exported into the cytoplasm and associates nonrandomly with proteins in the cytosol and organelles. The functions of these lncRNAs range from the control of translation and mitochondrial metabolism to the anchoring of cellular components on the cytoskeleton and regulation of protein degradation at the proteasome. In the present review, we provide an overview of the functions of lncRNAs in cytoplasmic structures and machineries und discuss their emerging roles in the coordination of the dense intracellular milieu. It is becoming apparent that further research into the functions of these lncRNAs will lead to an improved understanding of the spatiotemporal organization of cytoplasmic processes during homeostasis and disease.

13.
Int J Pharm ; 591: 119993, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33086089

RESUMO

P-glycoprotein (P-gp) associated multidrug resistance (MDR) represents a major failure in cancer treatment. The overexpression of P-gp is responsible for ATP-dependent efflux of drugs that decrease their intracellular accumulation. An effective downregulation of MDR1 gene using small interfering RNA (siRNA) is one of the safe and effective tools to overcome the P-gp triggered MDR. Therefore, the development of an efficient and non-toxic carrier system for siRNA delivery is a fundamental challenge for effective cancer treatment. Polyamidoamine (PAMAM) dendrimer has been used for efficient delivery of siRNA (dendriplexes) to the tumor cells but the associated toxicity problems render its use in biological applications. A non-covalent lipid modification (lipodendriplexes) is supposed to offer a promising strategy to overcome the demerits linked to the naked dendriplexes system. In the current study, we deliver siRNA, designed against MDR1 gene (si-MDR1), in colorectal carcinoma cells (Caco-2), having overexpression of P-gp, to check the role of MDR1 gene in tumor progression and multidrug resistance using two dimensional (2D) and three dimensional (3D) environment. Imatinib mesylate (IM), a P-gp substrate, was used as model drug. Our results revealed that the effective knockdown by lipodendriplexes system can significantly reduce the tumor cell migration in 2D (p < 0.001) and 3D (p < 0.001) cell cultures as compared to unmodified dendriplexes and si-Control groups. It was also observed that lipodendriplexes aided downregulation of MDR1 gene effectively, re-sensitized the Caco-2 cells for IM uptake and showed a significantly (p < 0.001) higher apoptosis. Our findings imply that our lipodendriplexes system has a great potential for siRNA delivery, however, further in vivo application using a suitable targeted system can play a major role for better cancer therapeutics.


Assuntos
Apoptose , Resistencia a Medicamentos Antineoplásicos , Células CACO-2 , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Inibidores de Proteínas Quinases , RNA Interferente Pequeno
14.
FASEB J ; 34(12): 16432-16448, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33095949

RESUMO

Infections of the lung are among the leading causes of death worldwide. Despite the preactivation of innate defense programs during viral infection, secondary bacterial infection substantially elevates morbidity and mortality rates. Particularly problematic are co-infections with influenza A virus (IAV) and the major bacterial pathogen Streptococcus pneumoniae. However, the molecular processes underlying the severe course of such co-infections are not fully understood. Previously, the absence of secreted glycoprotein Chitinase-3-like 1 (CHI3L1) was shown to increase pneumococcal replication in mice. We therefore hypothesized that an IAV preinfection decreases CHI3L1 levels to promote pneumococcal infection. Indeed, in an air-liquid interface model of primary human bronchial epithelial cells (hBECs), IAV preinfection interfered with apical but not basolateral CHI3L1 release. Confocal time-lapse microscopy revealed that the gradual loss of apical CHI3L1 localization during co-infection with influenza and S. pneumoniae coincided with the disappearance of goblet as well as ciliated cells and increased S. pneumoniae replication. Importantly, extracellular restoration of CHI3L1 levels using recombinant protein significantly reduced bacterial load in influenza preinfected bronchial models. Thus, recombinant CHI3L1 may provide a novel therapeutic means to lower morbidity and mortality associated with post-influenza pneumococcal infections.


Assuntos
Brônquios/metabolismo , Proteína 1 Semelhante à Quitinase-3/metabolismo , Coinfecção/microbiologia , Coinfecção/virologia , Vírus da Influenza A/patogenicidade , Infecções Pneumocócicas/metabolismo , Pneumonia Pneumocócica/metabolismo , Brônquios/microbiologia , Brônquios/virologia , Linhagem Celular , Coinfecção/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Humanos , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/virologia , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/virologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/virologia , Streptococcus pneumoniae/patogenicidade
15.
Oncoimmunology ; 9(1): 1773204, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32923132

RESUMO

The 'cancer cell fusion' theory is controversial due to the lack of methods available to identify hybrid cells and to follow the phenomenon in patients. However, it seems to be one of the best explanations for both the origin and metastasis of primary tumors. Herein, we co-cultured lung cancer stem cells with human monocytes and analyzed the dynamics and properties of tumor-hybrid cells (THC), as well as the molecular mechanisms beneath this fusion process by several techniques: electron-microscopy, karyotyping, CRISPR-Cas9, RNA-seq, immunostaining, signaling blockage, among others. Moreover, mice models were assessed for in vivo characterization of hybrids colonization and invasiveness. Then, the presence of THCs in bloodstream and samples from primary and metastatic lesions were detected by FACS and immunofluorescence protocols, and their correlations with TNM stages established. Our data indicate that the generation of THCs depends on the expression of CD36 on tumor stem cells and the oxidative state and polarization of monocytes, the latter being strongly influenced by microenvironmental fluctuations. Highly oxidized M2-like monocytes show the strongest affinity to fuse with tumor stem cells. THCs are able to proliferate, colonize and invade organs. THC-specific cell surface signature CD36+CD14+PANK+ allows identifying them in matched primary tumor tissues and metastases as well as in bloodstream from patients with lung cancer, thus functioning as a biomarker. THCs levels in circulation correlate with TNM classification. Our results suggest that THCs are involved in both origin and spread of metastatic cells. Furthermore, they might set the bases for future therapies to avoid or eradicate lung cancer metastasis.


Assuntos
Neoplasias Pulmonares , Monócitos , Células-Tronco Neoplásicas , Animais , Fusão Celular , Humanos , Células Híbridas , Camundongos
16.
Nucleic Acids Res ; 48(18): 10397-10412, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32946572

RESUMO

The RNA helicase RIG-I plays a key role in sensing pathogen-derived RNA. Double-stranded RNA structures bearing 5'-tri- or diphosphates are commonly referred to as activating RIG-I ligands. However, endogenous RNA fragments generated during viral infection via RNase L also activate RIG-I. Of note, RNase-digested RNA fragments bear a 5'-hydroxyl group and a 2',3'-cyclic phosphate. How endogenous RNA fragments activate RIG-I despite the lack of 5'-phosphorylation has not been elucidated. Here we describe an endogenous RIG-I ligand (eRL) that is derived from the internal transcribed spacer 2 region (ITS2) of the 45S ribosomal RNA after partial RNase A digestion in vitro, RNase A protein transfection or RNase L activation. The immunostimulatory property of the eRL is dependent on 2',3'-cyclic phosphate and its sequence is characterized by a G-quadruplex containing sequence motif mediating guanosine-5'-triphosphate (GTP) binding. In summary, RNase generated self-RNA fragments with 2',3'-cyclic phosphate function as nucleotide-5'-triphosphate binding aptamers activating RIG-I.


Assuntos
Proteína DEAD-box 58/genética , RNA Helicases/genética , RNA Ribossômico/genética , RNA/genética , Guanosina Trifosfato/genética , Humanos , Ligantes , Fosfatos/metabolismo , RNA/química , RNA Helicases/metabolismo , Receptores Imunológicos , Ribonucleases/genética
17.
Proc Natl Acad Sci U S A ; 117(16): 9042-9053, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32241891

RESUMO

RNA has been proposed as an important scaffolding factor in the nucleus, aiding protein complex assembly in the dense intracellular milieu. Architectural contributions of RNA to cytosolic signaling pathways, however, remain largely unknown. Here, we devised a multidimensional gradient approach, which systematically locates RNA components within cellular protein networks. Among a subset of noncoding RNAs (ncRNAs) cosedimenting with the ubiquitin-proteasome system, our approach unveiled ncRNA MaIL1 as a critical structural component of the Toll-like receptor 4 (TLR4) immune signal transduction pathway. RNA affinity antisense purification-mass spectrometry (RAP-MS) revealed MaIL1 binding to optineurin (OPTN), a ubiquitin-adapter platforming TBK1 kinase. MaIL1 binding stabilized OPTN, and consequently, loss of MaIL1 blunted OPTN aggregation, TBK1-dependent IRF3 phosphorylation, and type I interferon (IFN) gene transcription downstream of TLR4. MaIL1 expression was elevated in patients with active pulmonary infection and was highly correlated with IFN levels in bronchoalveolar lavage fluid. Our study uncovers MaIL1 as an integral RNA component of the TLR4-TRIF pathway and predicts further RNAs to be required for assembly and progression of cytosolic signaling networks in mammalian cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Interferon Tipo I/genética , Proteínas de Membrana Transportadoras/metabolismo , RNA não Traduzido/metabolismo , Infecções Respiratórias/imunologia , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adulto , Idoso , Buffy Coat/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/sangue , Interferon Tipo I/imunologia , Macrófagos , Masculino , Pessoa de Meia-Idade , Fosforilação/genética , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , RNA não Traduzido/sangue , RNA não Traduzido/genética , RNA-Seq , Infecções Respiratórias/sangue , Infecções Respiratórias/microbiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Adulto Jovem
18.
mBio ; 11(2)2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209695

RESUMO

Legionella pneumophila is an important cause of pneumonia. It invades alveolar macrophages and manipulates the immune response by interfering with signaling pathways and gene transcription to support its own replication. MicroRNAs (miRNAs) are critical posttranscriptional regulators of gene expression and are involved in defense against bacterial infections. Several pathogens have been shown to exploit the host miRNA machinery to their advantage. We therefore hypothesize that macrophage miRNAs exert positive or negative control over Legionella intracellular replication. We found significant regulation of 85 miRNAs in human macrophages upon L. pneumophila infection. Chromatin immunoprecipitation and sequencing revealed concordant changes of histone acetylation at the putative promoters. Interestingly, a trio of miRNAs (miR-125b, miR-221, and miR-579) was found to significantly affect intracellular L. pneumophila replication in a cooperative manner. Using proteome-analysis, we pinpointed this effect to a concerted downregulation of galectin-8 (LGALS8), DExD/H-box helicase 58 (DDX58), tumor protein P53 (TP53), and then MX dynamin-like GTPase 1 (MX1) by the three miRNAs. In summary, our results demonstrate a new miRNA-controlled immune network restricting Legionella replication in human macrophages.IMPORTANCE Cases of Legionella pneumophila pneumonia occur worldwide, with potentially fatal outcome. When causing human disease, Legionella injects a plethora of virulence factors to reprogram macrophages to circumvent immune defense and create a replication niche. By analyzing Legionella-induced changes in miRNA expression and genomewide chromatin modifications in primary human macrophages, we identified a cell-autonomous immune network restricting Legionella growth. This network comprises three miRNAs governing expression of the cytosolic RNA receptor DDX58/RIG-I, the tumor suppressor TP53, the antibacterial effector LGALS8, and MX1, which has been described as an antiviral factor. Our findings for the first time link TP53, LGALS8, DDX58, and MX1 in one miRNA-regulated network and integrate them into a functional node in the defense against L. pneumophila.


Assuntos
Galectinas/genética , Interações Hospedeiro-Patógeno , Legionella pneumophila/fisiologia , Macrófagos/microbiologia , MicroRNAs/genética , Proteínas de Resistência a Myxovirus/genética , Galectinas/metabolismo , Regulação da Expressão Gênica/imunologia , Humanos , Doença dos Legionários/microbiologia , Macrófagos/imunologia , MicroRNAs/imunologia , Proteínas de Resistência a Myxovirus/metabolismo , Proteoma , Transdução de Sinais , Células THP-1 , Fatores de Virulência
19.
mBio ; 11(1)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071273

RESUMO

A major obstacle in infection biology is the limited ability to recapitulate human disease trajectories in traditional cell culture and animal models, which impedes the translation of basic research into clinics. Here, we introduce a three-dimensional (3D) intestinal tissue model to study human enteric infections at a level of detail that is not achieved by conventional two-dimensional monocultures. Our model comprises epithelial and endothelial layers, a primary intestinal collagen scaffold, and immune cells. Upon Salmonella infection, the model mimics human gastroenteritis, in that it restricts the pathogen to the epithelial compartment, an advantage over existing mouse models. Application of dual transcriptome sequencing to the Salmonella-infected model revealed the communication of epithelial, endothelial, monocytic, and natural killer cells among each other and with the pathogen. Our results suggest that Salmonella uses its type III secretion systems to manipulate STAT3-dependent inflammatory responses locally in the epithelium without accompanying alterations in the endothelial compartment. Our approach promises to reveal further human-specific infection strategies employed by Salmonella and other pathogens.IMPORTANCE Infection research routinely employs in vitro cell cultures or in vivo mouse models as surrogates of human hosts. Differences between murine and human immunity and the low level of complexity of traditional cell cultures, however, highlight the demand for alternative models that combine the in vivo-like properties of the human system with straightforward experimental perturbation. Here, we introduce a 3D tissue model comprising multiple cell types of the human intestinal barrier, a primary site of pathogen attack. During infection with the foodborne pathogen Salmonella enterica serovar Typhimurium, our model recapitulates human disease aspects, including pathogen restriction to the epithelial compartment, thereby deviating from the systemic infection in mice. Combination of our model with state-of-the-art genetics revealed Salmonella-mediated local manipulations of human immune responses, likely contributing to the establishment of the pathogen's infection niche. We propose the adoption of similar 3D tissue models to infection biology, to advance our understanding of molecular infection strategies employed by bacterial pathogens in their human host.


Assuntos
Técnicas de Cocultura/métodos , Interações Hospedeiro-Patógeno/fisiologia , Intestinos/microbiologia , Infecções por Salmonella/microbiologia , Animais , Sistemas CRISPR-Cas , Células CACO-2 , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Epitélio/microbiologia , Gastroenterite/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Células Matadoras Naturais , Camundongos , Fator de Transcrição STAT3/metabolismo , Infecções por Salmonella/imunologia , Salmonella typhimurium/genética , Salmonella typhimurium/imunologia , Transcriptoma , Sistemas de Secreção Tipo III
20.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31391268

RESUMO

Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is essential for virus infectivity and spread. We previously demonstrated in vitro that the transmembrane protease TMPRSS2 cleaves influenza A virus (IAV) and influenza B virus (IBV) HA possessing a monobasic cleavage site. Subsequent studies revealed that TMPRSS2 is crucial for the activation and pathogenesis of H1N1pdm and H7N9 IAV in mice. In contrast, activation of H3N2 IAV and IBV was found to be independent of TMPRSS2 expression and supported by an as-yet-undetermined protease(s). Here, we investigated the role of TMPRSS2 in proteolytic activation of IAV and IBV in three human airway cell culture systems: primary human bronchial epithelial cells (HBEC), primary type II alveolar epithelial cells (AECII), and Calu-3 cells. Knockdown of TMPRSS2 expression was performed using a previously described antisense peptide-conjugated phosphorodiamidate morpholino oligomer, T-ex5, that interferes with splicing of TMPRSS2 pre-mRNA, resulting in the expression of enzymatically inactive TMPRSS2. T-ex5 treatment produced efficient knockdown of active TMPRSS2 in all three airway cell culture models and prevented proteolytic activation and multiplication of H7N9 IAV in Calu-3 cells and H1N1pdm, H7N9, and H3N2 IAV in HBEC and AECII. T-ex5 treatment also inhibited the activation and spread of IBV in AECII but did not affect IBV activation in HBEC and Calu-3 cells. This study identifies TMPRSS2 as the major HA-activating protease of IAV in human airway cells and IBV in type II pneumocytes and as a potential target for the development of novel drugs to treat influenza infections.IMPORTANCE Influenza A viruses (IAV) and influenza B viruses (IBV) cause significant morbidity and mortality during seasonal outbreaks. Cleavage of the viral surface glycoprotein hemagglutinin (HA) by host proteases is a prerequisite for membrane fusion and essential for virus infectivity. Inhibition of relevant proteases provides a promising therapeutic approach that may avoid the development of drug resistance. HA of most influenza viruses is cleaved at a monobasic cleavage site, and a number of proteases have been shown to cleave HA in vitro This study demonstrates that the transmembrane protease TMPRSS2 is the major HA-activating protease of IAV in primary human bronchial cells and of both IAV and IBV in primary human type II pneumocytes. It further reveals that human and murine airway cells can differ in their HA-cleaving protease repertoires. Our data will help drive the development of potent and selective protease inhibitors as novel drugs for influenza treatment.


Assuntos
Vírus da Influenza A/fisiologia , Vírus da Influenza B/fisiologia , Influenza Humana/virologia , Serina Endopeptidases/metabolismo , Animais , Brônquios/citologia , Células Cultivadas , Células Epiteliais/virologia , Técnicas de Silenciamento de Genes , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Influenza Humana/enzimologia , Influenza Humana/metabolismo , Camundongos , Infecções por Orthomyxoviridae/enzimologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Alvéolos Pulmonares/citologia , Serina Endopeptidases/genética , Regulação para Cima , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...