Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Astron Space Sci ; 9: 1095701, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38274407

RESUMO

The origin of life is one of the most fundamental questions of humanity. It has been and is still being addressed by a wide range of researchers from different fields, with different approaches and ideas as to how it came about. What is still incomplete is constrained information about the environment and the conditions reigning on the Hadean Earth, particularly on the inorganic ingredients available, and the stability and longevity of the various environments suggested as locations for the emergence of life, as well as on the kinetics and rates of the prebiotic steps leading to life. This contribution reviews our current understanding of the geological scene in which life originated on Earth, zooming in specifically on details regarding the environments and timescales available for prebiotic reactions, with the aim of providing experimenters with more specific constraints. Having set the scene, we evoke the still open questions about the origin of life: did life start organically or in mineralogical form? If organically, what was the origin of the organic constituents of life? What came first, metabolism or replication? What was the time-scale for the emergence of life? We conclude that the way forward for prebiotic chemistry is an approach merging geology and chemistry, i.e., far-from-equilibrium, wet-dry cycling (either subaerial exposure or dehydration through chelation to mineral surfaces) of organic reactions occurring repeatedly and iteratively at mineral surfaces under hydrothermal-like conditions.

2.
Science ; 378(6624): 1105-1110, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36417498

RESUMO

The Perseverance rover landed in Jezero crater, Mars, in February 2021. We used the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument to perform deep-ultraviolet Raman and fluorescence spectroscopy of three rocks within the crater. We identify evidence for two distinct ancient aqueous environments at different times. Reactions with liquid water formed carbonates in an olivine-rich igneous rock. A sulfate-perchlorate mixture is present in the rocks, which probably formed by later modifications of the rocks by brine. Fluorescence signatures consistent with aromatic organic compounds occur throughout these rocks and are preserved in minerals related to both aqueous environments.

3.
Life Sci Space Res (Amst) ; 23: 50-59, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31791605

RESUMO

The Joint Workshop on Induced Special Regions convened scientists and planetary protection experts to assess the potential of inducing special regions through lander or rover activity. An Induced Special Region is defined as a place where the presence of the spacecraft could induce water activity and temperature to be sufficiently high and persist for long enough to plausibly harbor life. The questions the workshop participants addressed were: (1) What is a safe stand-off distance, or formula to derive a safe distance, to a purported special region? (2) Questions about RTGs (Radioisotope Thermoelectric Generator), other heat sources, and their ability to induce special regions. (3) Is it possible to have an infected area on Mars that does not contaminate the rest of Mars? The workshop participants reached a general consensus addressing the posed questions, in summary: (1) While a spacecraft on the surface of Mars may not be able to explore a special region during the prime mission, the safe stand-off distance would decrease with time because the sterilizing environment, that is the martian surface would progressively clean the exposed surfaces. However, the analysis supporting such an exploration should ensure that the risk to exposing interior portions of the spacecraft (i.e., essentially unsterilized) to the martian surface is minimized. (2) An RTG at the surface of Mars would not create a Special Region but the short-term result depends on kinetics of melting, freezing, deliquescence, and desiccation. While a buried RTG could induce a Special Region, it would not pose a long-term contamination threat to Mars, with the possible exception of a migrating RTG in an icy deposit. (3) Induced Special Regions can allow microbial replication to occur (by definition), but such replication at the surface is unlikely to globally contaminate Mars. An induced subsurface Special Region would be isolated and microbial transport away from subsurface site is highly improbable.


Assuntos
Meio Ambiente Extraterreno , Planetas , Voo Espacial/estatística & dados numéricos , Astronave/instrumentação , Vida , Temperatura
4.
Astrobiology ; 18(11): 1375-1402, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29862836

RESUMO

We describe the history and features of the Ladder of Life Detection, a tool intended to guide the design of investigations to detect microbial life within the practical constraints of robotic space missions. To build the Ladder, we have drawn from lessons learned from previous attempts at detecting life and derived criteria for a measurement (or suite of measurements) to constitute convincing evidence for indigenous life. We summarize features of life as we know it, how specific they are to life, and how they can be measured, and sort these features in a general sense based on their likelihood of indicating life. Because indigenous life is the hypothesis of last resort in interpreting life-detection measurements, we propose a small but expandable set of decision rules determining whether the abiotic hypothesis is disproved. In light of these rules, we evaluate past and upcoming attempts at life detection. The Ladder of Life Detection is not intended to endorse specific biosignatures or instruments for life-detection measurements, and is by no means a definitive, final product. It is intended as a starting point to stimulate discussion, debate, and further research on the characteristics of life, what constitutes a biosignature, and the means to measure them.


Assuntos
Exobiologia , Origem da Vida , Fósseis , Marte , Modelos Teóricos
5.
Astrobiology ; 17(6-7): 655-685, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067288

RESUMO

The Mars Organic Molecule Analyzer (MOMA) instrument onboard the ESA/Roscosmos ExoMars rover (to launch in July, 2020) will analyze volatile and refractory organic compounds in martian surface and subsurface sediments. In this study, we describe the design, current status of development, and analytical capabilities of the instrument. Data acquired on preliminary MOMA flight-like hardware and experimental setups are also presented, illustrating their contribution to the overall science return of the mission. Key Words: Mars-Mass spectrometry-Life detection-Planetary instrumentation. Astrobiology 17, 655-685.

6.
Geobiology ; 10(4): 320-32, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22469147

RESUMO

Sulfur is central to the metabolisms of many organisms that inhabit extreme environments. While biotic and abiotic cycling of organic sulfur compounds has been well documented in low-temperature anaerobic environments, cycling of organic sulfur in hydrothermal environments has received less attention. Recently published thermodynamic data have been used to estimate aqueous alkyl thiol and sulfide activities in deep-sea hydrothermal systems. Here we use geochemical mixing models to predict fluid compositions that result from mixing end-member hydrothermal fluid from the East Pacific Rise with bottom seawater. These fluid compositions are combined with estimates of methanethiol and dimethylsulfide activities to evaluate energy yields for potential organic sulfur-based metabolisms under hydrothermal conditions. Aerobic respiration has the highest energy yields (over -240 kJ/mol e⁻) at lower temperature; however, oxygen is unlikely to persist at high temperatures, restricting aerobic respiration to mesophilic communities. Nitrite reduction to N2 has the highest energy yields at higher temperatures (greater than ∼40 °C). Nitrate and nitrite reduction to ammonium also yield significant energy (up to -70 kJ/mol e⁻). Much lower, but still feasible energy yields are calculated for sulfate reduction, disproportionation, and reduction with H2. Organic compound family and the activity of methanethiol and dimethylsulfide were less important than metabolic strategy in determining overall energy yields. All metabolic strategies considered were exergonic within some portion of the mixing regime suggesting that organic sulfur-based metabolisms may be prevalent within deep-sea hydrothermal vent microbial communities.


Assuntos
Fontes Hidrotermais/microbiologia , Compostos Orgânicos/metabolismo , Água do Mar/microbiologia , Compostos de Enxofre/metabolismo , Metabolismo Energético , Oceano Pacífico , Termodinâmica
7.
Int J Mol Sci ; 10(6): 2809-2837, 2009 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-19582231

RESUMO

The citric acid cycle (CAC) is the central pathway of energy transfer for many organisms, and understanding the origin of this pathway may provide insight into the origins of metabolism. In order to assess the thermodynamics of this key pathway for microorganisms that inhabit a wide variety of environments, especially those found in high temperature environments, we have calculated the properties and parameters for the revised Helgeson-Kirkham-Flowers equation of state for the major components of the CAC. While a significant amount of data is not available for many of the constituents of this fundamental pathway, methods exist that allow estimation of these missing data.


Assuntos
Ciclo do Ácido Cítrico , Transferência de Energia , Temperatura Alta , Pressão , Solventes/química , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...