Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Blood ; 97(12): 3829-35, 2001 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-11389023

RESUMO

Collagen-induced platelet aggregation is a complex process and involves synergistic action of integrins, immunoglobulin (Ig)-like receptors, G-protein-coupled receptors and their ligands, most importantly collagen itself, thromboxane A(2) (TXA(2)), and adenosine diphosphate (ADP). The precise role of each of these receptor systems in the overall processes of activation and aggregation, however, is still poorly defined. Among the collagen receptors expressed on platelets, glycoprotein (GP) VI has been identified to play a crucial role in collagen-induced activation. GPVI is associated with the FcRgamma chain, which serves as the signal transducing unit of the receptor complex. It is well known that clustering of GPVI by highly specific agonists results in platelet activation and irreversible aggregation, but it is unclear whether collagen has the same effect on the receptor. This study shows that platelets from Galphaq-deficient mice, despite their severely impaired response to collagen, normally aggregate on clustering of GPVI, suggesting this not to be the principal mechanism by which collagen activates platelets. On the other hand, dimerization of GPVI by a monoclonal antibody (JAQ1), which by itself did not induce aggregation, provided a sufficient stimulus to potentiate platelet responses to Gi-coupled, but not Gq-coupled, agonists. The combination of JAQ1 and adrenaline or ADP, but not serotonin, resulted in alpha(IIb)beta(3)-dependent aggregation that occurred without intracellular calcium mobilization and shape change in the absence of Galphaq or the P2Y(1) receptor. Together, these results provide evidence for a cross-talk between (dimerized) GPVI and Gi-coupled receptors during collagen-induced platelet aggregation. (Blood. 2001;97:3829-3835)


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas de Membrana , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptor Cross-Talk/fisiologia , Animais , Anticorpos Monoclonais/farmacologia , Colágeno/farmacologia , Sinergismo Farmacológico , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP/deficiência , Proteínas Heterotriméricas de Ligação ao GTP/genética , Camundongos , Camundongos Knockout , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/fisiologia , Glicoproteínas da Membrana de Plaquetas/imunologia , Glicoproteínas da Membrana de Plaquetas/fisiologia , Agregação de Receptores/efeitos dos fármacos , Agregação de Receptores/fisiologia , Receptores Purinérgicos P2/efeitos dos fármacos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y12 , Transdução de Sinais
2.
EMBO J ; 20(9): 2120-30, 2001 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11331578

RESUMO

Platelet adhesion on and activation by components of the extracellular matrix are crucial to arrest post-traumatic bleeding, but can also harm tissue by occluding diseased vessels. Integrin alpha2beta1 is thought to be essential for platelet adhesion to subendothelial collagens, facilitating subsequent interactions with the activating platelet collagen receptor, glycoprotein VI (GPVI). Here we show that Cre/loxP-mediated loss of beta1 integrin on platelets has no significant effect on the bleeding time in mice. Aggregation of beta1-null platelets to native fibrillar collagen is delayed, but not reduced, whereas aggregation to enzymatically digested soluble collagen is abolished. Furthermore, beta1-null platelets adhere to fibrillar, but not soluble collagen under static as well as low (150 s(-1)) and high (1000 s(-1)) shear flow conditions, probably through binding of alphaIIbbeta3 to von Willebrand factor. On the other hand, we show that platelets lacking GPVI can not activate integrins and consequently fail to adhere to and aggregate on fibrillar as well as soluble collagen. These data show that GPVI plays the central role in platelet-collagen interactions by activating different adhesive receptors, including alpha2beta1 integrin, which strengthens adhesion without being essential.


Assuntos
Plaquetas/metabolismo , Colágeno/metabolismo , Integrinas/metabolismo , Lectinas Tipo C , Adesividade Plaquetária/fisiologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Difosfato de Adenosina/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Tempo de Sangramento , Proteína C-Reativa/farmacologia , Coagulantes/farmacologia , Colágeno/farmacologia , Venenos de Crotalídeos/farmacologia , Relação Dose-Resposta a Droga , Citometria de Fluxo , Integrina beta1/genética , Integrinas/deficiência , Camundongos , Camundongos Knockout , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/fisiologia , Contagem de Plaquetas , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Receptores de Colágeno , Transdução de Sinais/fisiologia , Estresse Mecânico , Trombina/farmacologia , Trombose/genética , Trombose/metabolismo
3.
J Biol Chem ; 276(27): 25121-6, 2001 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-11352922

RESUMO

Although alpha(2)beta(1) integrin (glycoprotein Ia/IIa) has been established as a platelet collagen receptor, its role in collagen-induced platelet activation has been controversial. Recently, it has been demonstrated that rhodocytin (also termed aggretin), a snake venom toxin purified from the venom of Calloselasma rhodostoma, induces platelet activation that can be blocked by monoclonal antibodies against alpha(2)beta(1) integrin. This finding suggested that clustering of alpha(2)beta(1) integrin by rhodocytin is sufficient to induce platelet activation and led to the hypothesis that collagen may activate platelets by a similar mechanism. In contrast to these findings, we provided evidence that rhodocytin does not bind to alpha(2)beta(1) integrin. Here we show that the Cre/loxP-mediated loss of beta(1) integrin on mouse platelets has no effect on rhodocytin-induced platelet activation, excluding an essential role of alpha(2)beta(1) integrin in this process. Furthermore, proteolytic cleavage of the 45-kDa N-terminal domain of glycoprotein (GP) Ibalpha either on normal or on beta(1)-null platelets had no significant effect on rhodocytin-induced platelet activation. Moreover, mouse platelets lacking both alpha(2)beta(1) integrin and the activating collagen receptor GPVI responded normally to rhodocytin. Finally, even after additional proteolytic removal of the 45-kDa N-terminal domain of GPIbalpha rhodocytin induced aggregation of these platelets. These results demonstrate that rhodocytin induces platelet activation by mechanisms that are fundamentally different from those induced by collagen.


Assuntos
Integrinas/fisiologia , Lectinas Tipo C , Lectinas/metabolismo , Agregação Plaquetária , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Venenos de Víboras , Animais , Sítios de Ligação , Citometria de Fluxo , Integrinas/metabolismo , Ligantes , Camundongos , Peso Molecular , Receptores de Colágeno
4.
J Exp Med ; 193(4): 459-69, 2001 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-11181698

RESUMO

Coronary artery thrombosis is often initiated by abrupt disruption of the atherosclerotic plaque and activation of platelets on the subendothelial layers in the disrupted plaque. The extracellular matrix protein collagen is the most thrombogenic constituent of the subendothelial layer; therefore, a selective inhibition of the collagen activation pathway in platelets may provide strong antithrombotic protection while preserving other platelet functions. Here we demonstrate that treatment of mice with a monoclonal antibody against the activating platelet collagen receptor glycoprotein VI (GPVI; JAQ1) results in specific depletion of the receptor from circulating platelets and abolished responses of these cells to collagen and collagen-related peptides (CRPs). JAQ1-treated mice were completely protected for at least 2 wk against lethal thromboembolism induced by infusion of a mixture of collagen (0.8 mg/kg) and epinephrine (60 microg/ml). The tail bleeding times in JAQ1-treated mice were only moderately increased compared with control mice probably because the treatment did not affect platelet activation by other agonists such as adenosine diphosphate or phorbol myristate acetate. These results suggest that GPVI might become a target for long-term prophylaxis of ischemic cardiovascular diseases and provide the first evidence that it is possible to specifically deplete an activating glycoprotein receptor from circulating platelets in vivo.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Integrinas/imunologia , Glicoproteínas da Membrana de Plaquetas/imunologia , Trombose/prevenção & controle , Animais , Tempo de Sangramento , Plaquetas/química , Plaquetas/fisiologia , Proteína C-Reativa/farmacologia , Colágeno/efeitos adversos , Fibrinogênio/análise , Integrinas/deficiência , Camundongos , Glicoproteínas da Membrana de Plaquetas/deficiência , Receptores de Colágeno , Trombose/mortalidade
5.
J Biol Chem ; 276(1): 364-8, 2001 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-11036078

RESUMO

It has recently been shown that the monoclonal antibody JAQ1 to murine glycoprotein VI (GPVI) can cause aggregation of mouse platelets upon antibody cross-linking and that collagen-induced platelet aggregation can be inhibited by preincubation of platelets with JAQ1 in the absence of cross-linking (Nieswandt, B., Bergmeier, W., Schulte, V., Rackebrandt, K., Gessner, J. E., and Zirngibl, H. (2000) J. Biol. Chem. 275, 23998-24002). In the present study, we have shown that cross-linking of GPVI by JAQ1 results in tyrosine phosphorylation of the same profile of proteins as that induced by collagen, including the Fc receptor (FcR) gamma-chain, Syk, LAT, SLP-76, and phospholipase C gamma 2. In contrast, platelet aggregation and tyrosine phosphorylation of these proteins were inhibited when mouse platelets were preincubated with JAQ1 in the absence of cross-linking and were subsequently stimulated with a collagen-related peptide (CRP) that is specific for GPVI and low concentrations of collagen. However, at higher concentrations of collagen, but not CRP, aggregation of platelets and tyrosine phosphorylation of the above proteins (except for the adapter LAT) is re-established despite the presence of JAQ1. These observations suggest that a second activatory binding site, which is distinct from the CRP binding site on GPVI on mouse platelets, is occupied in the presence of high concentrations of collagen. Although this could be a second site on GPVI that is activated by a novel motif within the collagen molecule, the absence of LAT phosphorylation in response to collagen in the presence of JAQ1 suggests that this is more likely to be caused by activation of a second receptor that is also coupled to the FcR gamma-chain. The possibility that this response is mediated by a receptor that is not coupled to FcR gamma-chain is excluded on the grounds that aggregation is absent in platelets from FcR gamma-chain-deficient mice.


Assuntos
Colágeno/imunologia , Colágeno/farmacologia , Epitopos/imunologia , Lectinas Tipo C , Ativação Plaquetária/efeitos dos fármacos , Motivos de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/fisiologia , Colágeno/antagonistas & inibidores , Reagentes de Ligações Cruzadas/farmacologia , Venenos de Crotalídeos/farmacologia , Camundongos , Camundongos Endogâmicos , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/imunologia , Glicoproteínas da Membrana de Plaquetas/metabolismo
6.
J Biol Chem ; 275(31): 23998-4002, 2000 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-10825177

RESUMO

Platelet glycoprotein (GP) VI has been proposed as the major collagen receptor for activation of human platelets. Human GPVI belongs to the immunoglobulin superfamily and is noncovalently associated with the FcRgamma chain that is involved in signaling through the receptor. In mice, similar mechanisms seem to exist as platelets from FcRgamma chain-deficient mice do not aggregate in response to collagen. However, the activating collagen receptor on mouse platelets has not been definitively identified. In the current study we examined the function and in vivo expression of GPVI in control and FcRgamma chain-deficient mice with the first monoclonal antibody against GPVI (JAQ1). On wild type platelets, JAQ1 inhibited platelet aggregation induced by collagen but not PMA or thrombin. Cross-linking of bound JAQ1, on the other hand, induced aggregation of wild type but not FcRgamma chain-deficient platelets. JAQ1 stained platelets and megakaryocytes from wild type but not FcRgamma chain-deficient mice. Furthermore, JAQ1 recognized GPVI (approximately 60 kDa) in immunoprecipitation and Western blot experiments with wild type but not FcRgamma chain-deficient platelets. These results strongly suggest that GPVI is the collagen receptor responsible for platelet activation in mice and demonstrate that the association with the FcRgamma chain is critical for its expression and function.


Assuntos
Colágeno/farmacologia , Integrinas/metabolismo , Agregação Plaquetária/fisiologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores de IgG/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos , Camundongos Mutantes , Glicoproteínas da Membrana de Plaquetas/imunologia , Ligação Proteica , Receptores de Colágeno , Receptores de IgG/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA