Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 435(18): 168216, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37517789

RESUMO

Enterococci are normal human commensals and major causes of hospital-acquired infections. Enterococcal infections can be difficult to treat because enterococci harbor intrinsic and acquired antibiotic resistance, such as resistance to cephalosporins. In Enterococcus faecalis, the transmembrane kinase IreK, a member of the bacterial PASTA kinase family, is essential for cephalosporin resistance. The activity of IreK is boosted by the cytoplasmic protein GpsB, which promotes IreK autophosphorylation and signaling to drive cephalosporin resistance. A previous phosphoproteomics study identified eight putative IreK-dependent phosphorylation sites on GpsB, but the functional importance of GpsB phosphorylation was unknown. Here we used genetic and biochemical approaches to define three sites of phosphorylation on GpsB that functionally impact IreK activity and cephalosporin resistance. Phosphorylation at two sites (S80 and T84) serves to impair the ability of GpsB to activate IreK in vivo, suggesting phosphorylation of these sites acts as a means of negative feedback for IreK. The third site of phosphorylation (T133) occurs in a segment of GpsB termed the C-terminal extension that is unique to enterococcal GpsB homologs. The C-terminal extension is highly mobile in solution, suggesting it is largely unstructured, and phosphorylation of T133 appears to enable efficient phosphorylation at S80 / T84. Overall our results are consistent with a model in which multisite phosphorylation of GpsB impairs its ability to activate IreK, thereby diminishing signal transduction through the IreK-dependent pathway and modulating phenotypic cephalosporin resistance.


Assuntos
Antibacterianos , Proteínas de Bactérias , Resistência às Cefalosporinas , Cefalosporinas , Enterococcus faecalis , Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Resistência às Cefalosporinas/genética , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Cefalosporinas/farmacologia
2.
Protein Sci ; 32(8): e4724, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37417889

RESUMO

The outer leaflet of the outer membrane (OM) of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and other important pathogens is largely composed of lipopolysaccharide (LPS), which is essential to nearly all Gram-negative bacteria. LPS is transported to the outer leaflet of the OM through a yet unknown mechanism by seven proteins that comprise the LPS transport system. LptA, the only entirely periplasmic Lpt protein, bridges the periplasmic space between the IM LptB2 FGC and the OM LptDE complexes. LptA is postulated to protect the hydrophobic acyl chains of LPS as it crosses the hydrophilic periplasm, is essential to cell viability, and contains many conserved residues distributed across the protein. To identify which side chains are required for function of E. coli LptA in vivo, we performed a systematic, unbiased, high-throughput screen of the effect of 172 single alanine substitutions on cell viability utilizing an engineered BL21 derivative with a chromosomal knockout of the lptA gene. Remarkably, LptA is highly tolerant to amino acid substitution with alanine. Only four alanine mutants could not complement the chromosomal knockout; CD spectroscopy showed that these substitutions resulted in proteins with significantly altered secondary structure. In addition, 29 partial loss-of-function mutants were identified that led to OM permeability defects; interestingly, these sites were solely located within ß-strands of the central core of the protein and each resulted in misfolding of the protein. Therefore, no single residue within LptA is responsible for LPS binding, supporting previous EPR spectroscopy data indicating that sites across the entire protein work in concert to bind and transport LPS.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Transporte/química , Lipopolissacarídeos/metabolismo , Proteínas de Escherichia coli/química , Transporte Biológico , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo
3.
Protein Sci ; 32(7): e4697, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37312631

RESUMO

Many bacterial genomes encode a transmembrane protein kinase belonging to the PASTA kinase family, which controls numerous processes in diverse bacterial pathogens, including antibiotic resistance, cell division, stress resistance, toxin production, and virulence. PASTA kinases share a conserved three-part domain architecture, consisting of an extracellular PASTA domain, proposed to sense the peptidoglycan layer status, a single transmembrane helix, and an intracellular Ser/Thr kinase domain. The crystal structures of the kinase domain from two homologous PASTA kinases reveal a characteristic two-lobed structure typical of eukaryotic protein kinases with a centrally located, but unresolved, activation loop that becomes phosphorylated and regulates downstream signaling pathways. We previously identified three sites of phosphorylation on the activation loop (T163, T166, and T168) of IreK, a PASTA kinase from the pathogen Enterococcus faecalis, as well as a distal phosphorylation site (T218) that each influence IreK activity in vivo. Still, the mechanism by which loop phosphorylation regulates PASTA kinase function is yet unknown. Therefore, we utilized site-directed spin labeling (SDSL) and continuous wave (CW) electron paramagnetic resonance (EPR) spectroscopy to assess the E. faecalis IreK kinase activation loop dynamics, including the effects of phosphorylation on activation loop motion, and the IreK-IreB interaction. Our results reveal that the IreK activation loop occupies a more immobile state when dephosphorylated, and that loop autophosphorylation shifts the loop to a more mobile state that can then enable interaction with IreB, a known substrate.


Assuntos
Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas Serina-Treonina Quinases/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Bactérias/metabolismo
4.
Methods Mol Biol ; 2548: 83-96, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36151493

RESUMO

Site-directed spin labeling EPR (electron paramagnetic resonance) spectroscopy is a technique used to identify the local conformational changes at a specific residue of interest within a purified protein in response to a ligand. Here, we describe the site-directed spin labeling EPR spectroscopy methodology to monitor changes in the side-chain motion in soluble lipopolysaccharide transport proteins upon the addition of lipopolysaccharide (LPS). A comparison of the spectral overlays of the spin-labeled protein in the absence and presence of LPS provides a qualitative visualization of how LPS binding affects the motion of each spin-labeled site tested within the protein. No change in the spectral lineshapes of a spin-labeled protein in the absence and presence of LPS indicates that the site is not affected by LPS binding, while differences in the spectral lineshapes indicate that LPS does affect the mobility of the spin label side chain within the protein structure. This is a powerful readout of conformational changes at specific residues of interest that can be used to identify a specific site as a reporter of changes induced by ligand binding and to map out the effects of ligand binding through an array of reporter sites within a protein. With the use of AquaStar tubing, protein concentrations as low as 2 µM allow for up to a 100-fold excess of LPS. This methodology may also be applied to other protein-ligand or protein-protein interactions with minor adaptations.


Assuntos
Proteínas de Transporte , Lipopolissacarídeos , Proteínas de Transporte/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Ligantes , Lipopolissacarídeos/química , Proteínas/metabolismo , Marcadores de Spin
5.
J Mol Biol ; 434(7): 167465, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35077767

RESUMO

Arrestin binding to active phosphorylated G protein-coupled receptors terminates G protein coupling and initiates another wave of signaling. Among the effectors that bind directly to receptor-associated arrestins are extracellular signal-regulated kinases 1/2 (ERK1/2), which promote cellular proliferation and survival. Arrestins may also engage ERK1/2 in isolation in a pre- or post-signaling complex that is likely in equilibrium with the full signal initiation complex. Molecular details of these binary complexes remain unknown. Here, we investigate the molecular mechanisms whereby arrestin-2 and arrestin-3 (a.k.a. ß-arrestin1 and ß-arrestin2, respectively) engage ERK1/2 in pairwise interactions. We find that purified arrestin-3 binds ERK2 more avidly than arrestin-2. A combination of biophysical techniques and peptide array analysis demonstrates that the molecular basis in this difference of binding strength is that the two non-visual arrestins bind ERK2 via different parts of the molecule. We propose a structural model of the ERK2-arrestin-3 complex in solution using size-exclusion chromatography coupled to small angle X-ray scattering (SEC-SAXS). This binary complex exhibits conformational heterogeneity. We speculate that this drives the equilibrium either toward the full signaling complex with receptor-bound arrestin at the membrane or toward full dissociation in the cytoplasm. As ERK1/2 regulates cell migration, proliferation, and survival, understanding complexes that relate to its activation could be exploited to control cell fate.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno , beta-Arrestina 1 , beta-Arrestina 2 , Proteína Quinase 1 Ativada por Mitógeno/química , Ligação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X , beta-Arrestina 1/química , beta-Arrestina 2/química
6.
Protein Sci ; 27(8): 1407-1417, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29672978

RESUMO

Lipopolysaccharide (LPS) is an essential element of nearly all Gram-negative bacterial outer membranes and serves to protect the cell from adverse environmental stresses. Seven members of the lipopolysaccharide transport (Lpt) protein family function together to transport LPS from the inner membrane (IM) to the outer leaflet of the outer membrane of bacteria such as Escherichia coli. Each of these proteins has a solved crystal structure, including LptC, which is a largely periplasmic protein that is associated with the IM LptB2 FG complex and anchored to the membrane by an N-terminal helix. LptC directly binds LPS and is hypothesized to be involved in the transfer of LPS to another periplasmic protein, LptA. Purified and in solution, LptC forms a dimer. Here, point mutations designed to disrupt formation of the dimer are characterized using site-directed spin labeling double electron electron resonance (DEER) spectroscopy, light scattering, circular dichroism, and computational modeling. The computational studies reveal the molecular interactions that drive dimerization of LptC and elucidate how the disruptive mutations change this interaction, while the DEER and light scattering studies identify which mutants disrupt the dimer. And, using electron paramagnetic resonance spectroscopy and comparing the results to the previous quantitative characterization of the interactions between dimeric LptC and LPS and LptA, the functional consequences of monomeric LptC were also determined. These results indicate that disruption of the dimer does not affect LPS or LptA binding and that monomeric LptC binds LPS and LptA at levels similar to dimeric LptC.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Transporte/genética , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação Puntual/genética , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Protein Sci ; 27(2): 381-389, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29024084

RESUMO

Lipopolysaccharide (LPS, endotoxin) is the major component of the outer leaflet of the outer membrane of Gram-negative bacteria such as Escherichia coli and Salmonella typhimurium. LPS is a large lipid containing several acyl chains as its hydrophobic base and numerous sugars as its hydrophilic core and O-antigen domains, and is an essential element of the organisms' natural defenses in adverse environmental conditions. LptC is one of seven members of the lipopolysaccharide transport (Lpt) protein family that functions to transport LPS from the inner membrane (IM) to the outer leaflet of the outer membrane of the bacterium. LptC is anchored to the IM and associated with the IM LptFGB2 complex. It is hypothesized that LPS binds to LptC at the IM, transfers to LptA to cross the periplasm, and is inserted by LptDE into the outer leaflet of the outer membrane. The studies described here comprehensively characterize and quantitate the binding of LPS to LptC. Site-directed spin labeling electron paramagnetic resonance spectroscopy was utilized to characterize the LptC dimer in solution and monitor spin label mobility changes at 10 sites across the protein upon addition of exogenous LPS. The results indicate that soluble LptC forms concentration-independent N-terminal dimers in solution, LptA binding does not change the conformation of the LptC dimer nor appreciably disrupt the LptC dimer in vitro, and LPS binding affects the entire LptC protein, with the center and C-terminal regions showing a greater affinity for LPS than the N-terminal domain, which has similar dissociation constants to LptA.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/genética , Lipopolissacarídeos/química , Proteínas de Membrana/química , Multimerização Proteica , Motivos de Aminoácidos , Sítios de Ligação , Transporte Biológico , Cristalografia por Raios X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lipopolissacarídeos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Transporte Proteico
8.
PLoS One ; 12(8): e0184271, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28859178

RESUMO

The Sortase family of transpeptidases are found in numerous gram-positive bacteria and involved in divergent physiological processes including anchoring of surface proteins to the cell wall as well as pili assembly. As essential proteins, sortase enzymes have been the focus of considerable interest for the development of novel anti-microbials, however, more recently their function as unique transpeptidases has been exploited for the synthesis of novel bio-conjugates. Yet, for synthetic purposes, SrtA-mediated conjugation suffers from the enzyme's inherently poor catalytic efficiency. Therefore, to identify SrtA variants with improved catalytic efficiency, we used directed evolution to select a catalytically enhanced SrtA enzyme. An analysis of improved SrtA variants in the context of sequence conservation, NMR and x-ray crystal structures, and kinetic data suggests a novel mechanism for catalysis involving large conformational changes that delivers substrate to the active site pocket. Indeed, using DEER-EPR spectroscopy, we reveal that upon substrate binding, SrtA undergoes a large scissors-like conformational change that simultaneously translates the sort-tag substrate to the active site in addition to repositioning key catalytic residues for esterification. A better understanding of Sortase dynamics will significantly enhance future engineering and drug discovery efforts.


Assuntos
Aminoaciltransferases/química , Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Evolução Molecular Direcionada , Staphylococcus aureus/enzimologia , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Conformação Proteica , Especificidade por Substrato
9.
Protein Sci ; 26(8): 1517-1523, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28419595

RESUMO

Lipopolysaccharide (LPS) and the periplasmic protein, LptA, are two essential components of Gram-negative bacteria. LPS, also known as endotoxin, is found asymmetrically distributed in the outer leaflet of the outer membrane of Gram-negative bacteria such as Escherichia coli and plays a role in the organism's natural defense in adverse environmental conditions. LptA is a member of the lipopolysaccharide transport protein (Lpt) family, which also includes LptC, LptDE, and LptBFG2 , that functions to transport LPS through the periplasm to the outer leaflet of the outer membrane after MsbA flips LPS across the inner membrane. It is hypothesized that LPS binds to LptA to cross the periplasm and that the acyl chains of LPS bind to the central pocket of LptA. The studies described here are the first to comprehensively characterize and quantitate the binding of LPS by LptA. Using site-directed spin-labeling electron paramagnetic resonance (EPR) spectroscopy, data were collected for 15 spin-labeled residues in and around the proposed LPS binding pocket on LptA to observe the mobility changes caused by the presence of exogenous LPS and identify the binding location of LPS to LptA. The EPR data obtained suggest a 1:1 ratio for the LPS:LptA complex and allow the first calculation of dissociation constants for the LptA-LPS interaction. The results indicate that the entire protein is affected by LPS binding, the N-terminus unfolds in the presence of LPS, and a mutant LptA protein unable to form oligomers has an altered affinity for LPS.


Assuntos
Proteínas de Transporte/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Lipopolissacarídeos/química , Periplasma/química , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Cinética , Lipopolissacarídeos/metabolismo , Modelos Moleculares , Mutação , Periplasma/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Marcadores de Spin
10.
Invest Ophthalmol Vis Sci ; 58(3): 1368-1377, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28253399

RESUMO

Purpose: The large Forkhead (Fox) transcription factor family has essential roles in development, and mutations cause a wide range of ocular and nonocular disease. One member, Foxc2 is expressed in neural crest (NC)-derived periocular mesenchymal cells of the developing murine eye; however, its precise role in the development, establishment, and maintenance of the ocular surface has yet to be investigated. Methods: To specifically delete Foxc2 from NC-derived cells, conditional knockout mice for Foxc2 (NC-Foxc2-/-) were generated by crossing Foxc2F mice with Wnt1-Cre mice. Similarly, we also generated compound NC-specific mutations of Foxc2 and a closely related gene, Foxc1 (NC-Foxc1-/-;NC-Foxc2-/-) in mice. Results: Neural crest-Foxc2-/- mice show abnormal thickness in the peripheral-to-central corneal stroma and limbus and displaced pupils with irregular iris. The neural crest-specific mutation in Foxc2 also leads to ectopic neovascularization in the cornea, as well as impaired ocular epithelial cell identity and corneal conjunctivalization. Compound, NC-specific Foxc1; Foxc2 homozygous mutant mice have more severe defects in structures of the ocular surface, such as the cornea and eyelids, accompanied by significant declines in the expression of another key developmental factor, Pitx2, and its downstream effector Dkk2, which antagonizes canonical Wnt signaling. Conclusions: The neural crest-Foxc2 mutation is associated with corneal conjunctivalization, ectopic corneal neovascularization, and disrupted ocular epithelial cell identity. Furthermore, Foxc2 and Foxc1 cooperatively function in NC-derived mesenchymal cells to ensure proper morphogenesis of the ocular surface via the regulation of Wnt signaling. Together, Foxc2 is required in the NC lineage for mesenchymal-epithelial interactions in corneal and ocular surface development.


Assuntos
Segmento Anterior do Olho/embriologia , DNA/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Crista Neural/metabolismo , Organogênese/genética , Animais , Segmento Anterior do Olho/metabolismo , Angiofluoresceinografia , Fatores de Transcrição Forkhead/biossíntese , Fundo de Olho , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Knockout , Modelos Animais , Crista Neural/embriologia , Retina/embriologia , Retina/metabolismo , Transdução de Sinais , Tomografia de Coerência Óptica
11.
Appl Magn Reson ; 48(11-12): 1341-1353, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29332998

RESUMO

The use of pressure is an advantageous approach to the study of protein structure and dynamics because it can shift the equilibrium populations of protein conformations toward higher energy states that are not of sufficient population to be observable at atmospheric pressure. Recently, the Hubbell group at the University of California, Los Angeles, reintroduced the application of high pressure to the study of proteins by electron paramagnetic resonance (EPR) spectroscopy. This methodology is possible using X-band EPR spectroscopy due to advances in pressure intensifiers, sample cells, and resonators. In addition to the commercial availability of the pressure generation and sample cells by Pressure Biosciences Inc., a five-loop-four-gap resonator required for the initial high pressure EPR spectroscopy experiments by the Hubbell group, and those reported here, was designed by James S. Hyde and built and modified at the National Biomedical EPR Center. With these technological advances, we determined the effect of pressure on the essential periplasmic lipopolysaccharide (LPS) transport protein from Escherichia coli, LptA, and one of its binding partners, LptC. LptA unfolds from the N-terminus to the C-terminus, binding of LPS does not appreciably stabilize the protein under pressure, and monomeric LptA unfolds somewhat more readily than oligomeric LptA upon pressurization to 2 kbar. LptC exhibits a fold and relative lack of stability upon LPS binding similar to LptA, yet adopts an altered, likely monomeric, folded conformation under pressure with only its C-terminus unraveling. The pressure-induced changes likely correlate with functional changes associated with binding and transport of LPS.

12.
Science ; 351(6273): 608-12, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26912703

RESUMO

Polymyxins are antibiotics used in the last line of defense to combat multidrug-resistant infections by Gram-negative bacteria. Polymyxin resistance arises through charge modification of the bacterial outer membrane with the attachment of the cationic sugar 4-amino-4-deoxy-l-arabinose to lipid A, a reaction catalyzed by the integral membrane lipid-to-lipid glycosyltransferase 4-amino-4-deoxy-L-arabinose transferase (ArnT). Here, we report crystal structures of ArnT from Cupriavidus metallidurans, alone and in complex with the lipid carrier undecaprenyl phosphate, at 2.8 and 3.2 angstrom resolution, respectively. The structures show cavities for both lipidic substrates, which converge at the active site. A structural rearrangement occurs on undecaprenyl phosphate binding, which stabilizes the active site and likely allows lipid A binding. Functional mutagenesis experiments based on these structures suggest a mechanistic model for ArnT family enzymes.


Assuntos
Arabinose/análogos & derivados , Proteínas de Bactérias/química , Cupriavidus/enzimologia , Lipídeo A/química , Pentosiltransferases/química , Amino Açúcares/química , Arabinose/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Catálise , Domínio Catalítico , Cristalografia por Raios X , Glicosilação , Mutagênese , Mutação , Pentosiltransferases/genética , Pentosiltransferases/ultraestrutura , Fosfatos de Poli-Isoprenil/química , Polimixinas/química , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato
13.
Photoacoustics ; 2(2): 81-86, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25013754

RESUMO

Corneal neovascularization leads to blurred vision, thus in vivo visualization is essential for pathological studies in animal models. Photoacoustic (PA) imaging can delineate microvasculature and hemodynamics noninvasively, which is suitable for investigating corneal neovascularization. In this study, we demonstrate in vivo imaging of corneal neovascularization in the mouse eye by optical-resolution photoacoustic microscopy (OR-PAM), where corneal neovascularization is induced by deliberate alkali burn injuries in C57BL6/J inbred mice corneas on the left eye. We used OR-PAM to image five mice with corneal alkali burn injuries; the uninjured eyes (right eye) in these mice are then used as the controls. Corneal images acquired by OR-PAM with and without alkali burn injury are compared, clear signs of corneal neovascularization are present in the OR-PAM images of injured eyes; the OR-PAM results are also confirmed by postmortem fluorescence-labeled confocal microscopy.

14.
Protein Sci ; 22(11): 1639-45, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24123237

RESUMO

The lipopolysaccharide (LPS)-rich outer membrane (OM) is a unique feature of Gram-negative bacteria, and LPS transport across the inner membrane (IM) and through the periplasm is essential to the biogenesis and maintenance of the OM. LPS is transported across the periplasm to the outer leaflet of the OM by the LPS transport (Lpt) system, which in Escherichia coli is comprised of seven recently identified proteins, including LptA, LptC, LptDE, and LptFGB2 . Structures of the periplasmic protein LptA and the soluble portion of the membrane-associated protein LptC have been solved and show these two proteins to be highly structurally homologous with unique folds. LptA has been shown to form concentration dependent oligomers that stack end-to-end. LptA and LptC have been shown to associate in vivo and are expected to form a similar protein-protein interface to that found in the LptA dimer. In these studies, we disrupted LptA oligomerization by introducing two point mutations that removed a lysine and glutamine side chain from the C-terminal ß-strand of LptA. This loss of oligomerization was characterized using EPR spectroscopy techniques and the affinity of the interaction between the mutant LptA protein and WT LptC was determined using EPR spectroscopy (Kd = 15 µM) and isothermal titration calorimetry (Kd = 14 µM). Kd values were also measured by EPR spectroscopy for the interaction between LptC and WT LptA (4 µM) and for WT LptA oligomerization (29 µM). These data suggest that the affinity between LptA and LptC is stronger than the affinity for LptA oligomerization.


Assuntos
Proteínas de Transporte/química , Proteínas de Escherichia coli/química , Proteínas de Membrana/química , Multimerização Proteica , Sequência de Aminoácidos , Sítios de Ligação , Calorimetria , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação Puntual , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência
15.
J Biol Chem ; 288(29): 21228-21235, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23709218

RESUMO

In bacteria, ATP-binding cassette (ABC) transporters are vital for the uptake of nutrients and cofactors. Based on differences in structure and activity, ABC importers are divided into two types. Type I transporters have been well studied and employ a tightly regulated alternating access mechanism. Less is known about Type II importers, but much of what we do know has been observed in studies of the vitamin B12 importer BtuC2D2. MolB2C2 (formally known as HI1470/71) is also a Type II importer, but its substrate, molybdate, is ∼10-fold smaller than vitamin B12. To understand mechanistic differences among Type II importers, we focused our studies on MolBC, for which alternative conformations may be required to transport its relatively small substrate. To investigate the mechanism of MolBC, we employed disulfide cross-linking and EPR spectroscopy. From these studies, we found that nucleotide binding is coupled to a conformational shift at the periplasmic gate. Unlike the larger conformational changes in BtuCD-F, this shift in MolBC-A is akin to unlocking a swinging door: allowing just enough space for molybdate to slip into the cell. The lower cytoplasmic gate, identified in BtuCD-F as "gate I," remains open throughout the MolBC-A mechanism, and cytoplasmic gate II closes in the presence of nucleotide. Combining our results, we propose a peristaltic mechanism for MolBC-A, which gives new insight in the transport of small substrates by a Type II importer.


Assuntos
Proteínas de Bactérias/metabolismo , Haemophilus influenzae/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Molibdênio/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Transporte Biológico/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Dissulfetos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Modelos Biológicos , Periplasma/efeitos dos fármacos , Periplasma/metabolismo , Estrutura Secundária de Proteína
16.
Dev Biol ; 371(1): 35-46, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22898305

RESUMO

Spermatogonial stem cells divide throughout life, maintaining their own population and giving rise to differentiated gametes. The unstable regulatory protein Geminin is thought to be one of the factors that determine whether stem cells continue to divide or terminally differentiate. Geminin regulates the extent of DNA replication and is thought to maintain cells in an undifferentiated state by inhibiting various transcription factors and chromatin remodeling proteins. To examine how Geminin might regulate spermatogenesis, we developed two conditional mouse models in which the Geminin gene (Gmnn) is deleted from either spermatogonia or meiotic spermatocytes. Deleting Geminin from spermatogonia causes complete sterility in male mice. Gmnn(-/-) spermatogonia disappear during the initial wave of mitotic proliferation that occurs during the first week of life. Gmnn(-/-) spermatogonia exhibit more double-stranded DNA breaks than control cells, consistent with a defect in DNA replication. They maintain expression of genes associated with the undifferentiated state and do not prematurely express genes characteristic of more differentiated spermatogonia. In contrast, deleting Geminin from spermatocytes does not disrupt meiosis or the differentiation of spermatids into mature sperm. In females, Geminin is not required for meiosis, oocyte differentiation, or fertility after the embryonic period of mitotic proliferation has ceased. We conclude that Geminin is absolutely required for mitotic proliferation of spermatogonia but does not regulate their differentiation. Our results suggest that Geminin maintains replication fidelity during the mitotic phase of spermatogenesis, ensuring the precise duplication of genetic information for transmission to the next generation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Fertilidade/genética , Mitose/fisiologia , Proteínas Nucleares/metabolismo , Espermatogônias/fisiologia , Animais , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Replicação do DNA/genética , Galactosídeos , Geminina , Técnicas de Inativação de Genes , Imuno-Histoquímica , Indóis , Masculino , Camundongos , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase em Tempo Real , Espermatogônias/citologia
17.
PLoS One ; 7(5): e38009, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22662261

RESUMO

In many organisms early development is under control of the maternal genome and zygotic gene expression is delayed until the mid-blastula transition (MBT). As zygotic transcription initiates, cell cycle checkpoints become activated and the tempo of cell division slows. The mechanisms that activate zygotic transcription at the MBT are incompletely understood, but they are of interest because they may resemble mechanisms that cause stem cells to stop dividing and terminally differentiate. The unstable regulatory protein Geminin is thought to coordinate cell division with cell differentiation. Geminin is a bi-functional protein. It prevents a second round of DNA replication during S and G2 phase by binding and inhibiting the essential replication factor Cdt1. Geminin also binds and inhibits a number of transcription factors and chromatin remodeling proteins and is thought to keep dividing cells in an undifferentiated state. We previously found that the cells of Geminin-deficient Xenopus embryos arrest in G2 phase just after the MBT then disintegrate at the onset of gastrulation. Here we report that they also fail to express most zygotic genes. The gene expression defect is cell-autonomous and is reproduced by over-expressing Cdt1 or by incubating the embryos in hydroxyurea. Geminin deficient and hydroxyurea-treated blastomeres accumulate DNA damage in the form of double stranded breaks. Bypassing the Chk1 pathway overcomes the cell cycle arrest caused by Geminin depletion but does not restore zygotic gene expression. In fact, bypassing the Chk1 pathway by itself induces double stranded breaks and abolishes zygotic transcription. We did not find evidence that Geminin has a replication-independent effect on transcription. We conclude that Geminin is required to maintain genome integrity during the rapid cleavage divisions, and that DNA damage disrupts zygotic gene transcription at the MBT, probably through activation of DNA damage checkpoint pathways.


Assuntos
Blástula/metabolismo , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Xenopus/embriologia , Xenopus/genética , Zigoto/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Feminino , Geminina , Deleção de Genes , Hidroxiureia/farmacologia , Masculino , Mutação , Ligação Proteica , Proteínas com Domínio T/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas de Xenopus/metabolismo
18.
Circ Res ; 111(3): 312-21, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22581926

RESUMO

RATIONALE: Ischemic cardiovascular disease represents one of the largest epidemics currently facing the aging population. Current literature has illustrated the efficacy of autologous, stem cell therapies as novel strategies for treating these disorders. The CD34+ hematopoetic stem cell has shown significant promise in addressing myocardial ischemia by promoting angiogenesis that helps preserve the functionality of ischemic myocardium. Unfortunately, both viability and angiogenic quality of autologous CD34+ cells decline with advanced age and diminished cardiovascular health. OBJECTIVE: To offset age- and health-related angiogenic declines in CD34+ cells, we explored whether the therapeutic efficacy of human CD34+ cells could be enhanced by augmenting their secretion of the known angiogenic factor, sonic hedgehog (Shh). METHODS AND RESULTS: When injected into the border zone of mice after acute myocardial infarction, Shh-modified CD34+ cells (CD34(Shh)) protected against ventricular dilation and cardiac functional declines associated with acute myocardial infarction. Treatment with CD34(Shh) also reduced infarct size and increased border zone capillary density compared with unmodified CD34 cells or cells transfected with the empty vector. CD34(Shh) primarily store and secrete Shh protein in exosomes and this storage process appears to be cell-type specific. In vitro analysis of exosomes derived from CD34(Shh) revealed that (1) exosomes transfer Shh protein to other cell types, and (2) exosomal transfer of functional Shh elicits induction of the canonical Shh signaling pathway in recipient cells. CONCLUSIONS: Exosome-mediated delivery of Shh to ischemic myocardium represents a major mechanism explaining the observed preservation of cardiac function in mice treated with CD34(Shh) cells.


Assuntos
Antígenos CD34/administração & dosagem , Proteínas Hedgehog/administração & dosagem , Transplante de Células-Tronco Hematopoéticas/métodos , Infarto do Miocárdio/cirurgia , Animais , Antígenos CD34/uso terapêutico , Células Cultivadas , Proteínas Hedgehog/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Infarto do Miocárdio/fisiopatologia , Células NIH 3T3 , Disfunção Ventricular/fisiopatologia , Disfunção Ventricular/cirurgia
19.
Genesis ; 50(10): 766-74, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22522965

RESUMO

The Forkhead box transcription factors, Foxc1 and Foxc2, are crucial for development of the eye, cardiovascular network, and other physiological systems, but their cell-type specific and postdevelopmental functions are unknown, in part because conventional (i.e., whole-organism) homozygous-null mutations of either factor result in perinatal death. Here, we describe the generation of mice with conditional-null Foxc1(flox) and Foxc2(flox) mutations that are induced via Cre-mediated recombination. Mice homozygous for the unrecombined alleles are viable and fertile, indicating that the conditional alleles retain their wild-type function. The embryos of Foxc1(flox) or Foxc2(flox) mice crossed with Cre-deleter mice that are homozygous for the recombined allele (i.e., Foxc1(Δ/Δ) or Foxc2(Δ/Δ) embryos) lack expression of the corresponding gene and show the same developmental defects observed in conventional homozygous mutant embryos. We expect these conditional mutations to enable characterization of the cell-type specific functions of Foxc1 and Foxc2 in development, disease, and adult animals.


Assuntos
Alelos , Fatores de Transcrição Forkhead/genética , Animais , Fatores de Transcrição Forkhead/metabolismo , Homozigoto , Integrases/genética , Camundongos , Camundongos Transgênicos , Recombinação Genética , Transcrição Gênica
20.
Protein Sci ; 21(2): 211-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22109962

RESUMO

Gram-negative bacteria such as Escherichia coli have an inner membrane and an asymmetric outer membrane (OM) that together protect the cytoplasm and act as a highly selective permeability barrier. Lipopolysaccharide (LPS) is the major component of the outer leaflet of the OM and is essential for the survival of nearly all Gram-negative bacteria. Recent advances in understanding the proteins involved in the transport of LPS across the periplasm and into the outer leaflet of the OM include the identification of seven proteins suggested to comprise the LPS transport (Lpt) system. Crystal structures of the periplasmic Lpt protein LptA have recently been reported and show that LptA forms oligomers in either an end-to-end arrangement or a side-by-side dimer. It is not known if LptA oligomers bridge the periplasm to form a large, connected protein complex or if monomeric LptA acts as a periplasmic shuttle to transport LPS across the periplasm. Therefore, the studies presented here focus specifically on the LptA protein and its oligomeric arrangement and concentration dependence in solution using experimental data from several biophysical approaches, including laser light scattering, crosslinking, and double electron electron resonance spectroscopy. The results of these complementary techniques clearly show that LptA readily associates into stable, end-to-end, rod-shaped oligomers even at relatively low local protein concentrations and that LptA forms a continuous array of higher order oligomeric end-to-end structures as a function of increasing protein concentration.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Multimerização Proteica/fisiologia , Reagentes de Ligações Cruzadas/farmacologia , Relação Dose-Resposta a Droga , Modelos Biológicos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/efeitos dos fármacos , Concentração Osmolar , Dobramento de Proteína , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...