Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
FASEB J ; 38(14): e23837, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39031536

RESUMO

Bone morphogenetic protein 15 (BMP15) is an oocyte-specific growth factor important for successful female reproduction in mammals. While mutations in BMP15/Bmp15 cause ovulatory deficiency and/or infertility in certain mammalian species, loss of bmp15 in zebrafish, a continuous spawner and the only bmp15 knockout model in fish to date, results in complete arrest of follicle development and later female-to-male sex reversal, preventing to examine effects on ovulation/fertilization. Here, we used Atlantic salmon, a seasonal spawner, and generated bmp15 mutants to investigate ovarian development and fertility. Histological and morphometric analyses revealed that in biallelic frameshift (bmp15 fs/fs) mutant ovaries, folliculogenesis started earlier, resulting in an advanced development compared to wild-type (WT) controls, accompanied by a weaker expression of the (early) oocyte-specific factor figla. This precocious ovarian development was followed in bmp15 fs/fs females by enhanced follicle atresia during vitellogenic stages. Although genes involved in steroid synthesis and signaling (star, cyp11b, cyp17a1 and esr1) were dramatically higher in late vitellogenic bmp15 fs/fs mutant ovaries, estradiol-17ß plasma levels were lower than in WT counterparts, potentially reflecting compensatory changes at the level of ovarian gene expression. At spawning, bmp15 fs/fs females displayed lower gonado-somatic index values and reduced oocyte diameter, and the majority (71.4%), showed mature non-ovulating ovaries with a high degree of atresia. The remaining (28.6%) females spawned eggs but they either could not be fertilized or, upon fertilization, showed severe malformations and embryonic mortality. Our results show that Bmp15 is required for proper follicle recruitment and growth and later ovulatory success in Atlantic salmon, providing an alternative candidate target to induce sterility in farmed salmon. Moreover, since loss of bmp15 in salmon, in contrast to zebrafish, does not result in female-to-male sex change, this is the first mutant model in fish allowing further investigations on Bmp15-mediated functions in the ovulatory period.


Assuntos
Proteína Morfogenética Óssea 15 , Ovulação , Salmo salar , Animais , Proteína Morfogenética Óssea 15/genética , Proteína Morfogenética Óssea 15/metabolismo , Feminino , Salmo salar/metabolismo , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Ovário/metabolismo , Folículo Ovariano/metabolismo , Oócitos/metabolismo , Masculino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Estações do Ano
2.
Endocrinology ; 165(4)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38298132

RESUMO

Early puberty poses a significant challenge for male Atlantic salmon in aquaculture due to its negative impact on growth and welfare. The regulation of puberty in vertebrates involves 2 key reproductive hormones: follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and their gonadal receptors. In male mice lacking FSH receptor, testes size is reduced, but fertility is maintained, while medaka and zebrafish with a disrupted fshr gene exhibit near normal testis size and fertility. In these fishes both Fsh and Lh are present during puberty and Lh may rescue fertility, while in salmonid fish only Fsh is present in the circulation during puberty. Using CRISPR-Cas9, we produced crispants with a high prevalence of fshr mutations at the target site, which remained fertile, although more than half showed a testis development deviating from wild-type (wt) males. Crossing out these F0 crispants to each other produced a viable F1 generation showing frameshift (fshr-/-) or in-frame mutations (fshrif/if). Nearly all wt males matured while all fshr-/- males remained immature with small testes containing A spermatogonia as the furthest developed germ cell type and prepubertal plasma androgen levels. Also, the pituitary transcript levels of gnrhr2bba and lhb, but not for fshb, were reduced in the fshr-/- males compared with maturing males. More than half of the fshrif/if mutant males showed no or a delayed maturation. In conclusion, Atlantic salmon show the unique characteristic that loss of Fshr function alone results in male infertility, offering new opportunities to control precocious puberty or fertility in salmon.


Assuntos
Receptores do FSH , Salmo salar , Masculino , Animais , Camundongos , Receptores do FSH/genética , Receptores do FSH/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Peixe-Zebra/genética , Maturidade Sexual/genética , Hormônio Foliculoestimulante/metabolismo , Testículo/metabolismo
3.
Animals (Basel) ; 12(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36290123

RESUMO

In teleost, as in other vertebrates, stress affects reproduction. A key component of the stress response is the pituitary secretion of the adrenocorticotropic hormone (ACTH), which binds to the melanocortin 2 receptor (MC2R) in the adrenal glands and activates cortisol biosynthesis. In zebrafish, Mc2r was identified in male and female gonads, while ACTH has been shown to have a physiological role in modulating reproductive activity. In this study, the hypothesis that other melanocortins may also affect how the zebrafish gonadal function is explored, specifically steroid biosynthesis, given the presence of members of the melanocortin signaling system in zebrafish gonads. Using cell culture, expression analysis, and cellular localization of gene expression, our new observations demonstrated that melanocortin receptors, accessory proteins, antagonists, and agonists are expressed in both the ovary and testis of zebrafish (n = 4 each sex). Moreover, melanocortin peptides modulate both basal and gonadotropin-stimulated steroid release from zebrafish gonads (n = 15 for males and n = 50 for females). In situ hybridization in ovaries (n = 3) of zebrafish showed mc1r and mc4r in follicular cells and adjacent to cortical alveoli in the ooplasm of previtellogenic and vitellogenic oocytes. In zebrafish testes (n = 3), mc4r and mc1r were detected exclusively in germ cells, specifically in spermatogonia and spermatocytes. Our results suggest that melanocortins are, directly or indirectly, involved in the endocrine control of vitellogenesis in females, through modulation of estradiol synthesis via autocrine or paracrine actions in zebrafish ovaries. Adult zebrafish testes were sensitive to low doses of ACTH, eliciting testosterone production, which indicates a potential role of this peptide as a paracrine regulator of testicular function.

4.
J Photochem Photobiol B ; 234: 112500, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35816857

RESUMO

BACKGROUND AND AIM: A photosensitizer (PS) delivery and comprehensive tumor targeting platform was developed that is centered on the photosensitization of key pharmacological targets in solid tumors (cancer cells, tumor vascular endothelium, and cellular and non-cellular components of the tumor microenvironment) before photodynamic therapy (PDT). Interstitially targeted liposomes (ITLs) encapsulating zinc phthalocyanine (ZnPC) and aluminum phthalocyanine (AlPC) were formulated for passive targeting of the tumor microenvironment. In previous work it was established that the PEGylated ITLs were taken up by cultured cholangiocarcinoma cells. The aim of this study was to verify previous results in cancer cells and to determine whether the ITLs can also be used to photosensitize cells in the tumor microenvironment and vasculature. Following positive results, rudimentary in vitro and in vivo experiments were performed with ZnPC-ITLs and AlPC-ITLs as well as their water-soluble tetrasulfonated derivatives (ZnPCS4 and AlPCS4) to assemble a research dossier and bring this platform closer to clinical transition. METHODS: Flow cytometry and confocal microscopy were employed to determine ITL uptake and PS distribution in cholangiocarcinoma (SK-ChA-1) cells, endothelial cells (HUVECs), fibroblasts (NIH-3T3), and macrophages (RAW 264.7). Uptake of ITLs by endothelial cells was verified under flow conditions in a flow chamber. Dark toxicity and PDT efficacy were determined by cell viability assays, while the mode of cell death and cell cycle arrest were assayed by flow cytometry. In vivo systemic toxicity was assessed in zebrafish and chicken embryos, whereas skin phototoxicity was determined in BALB/c nude mice. A PDT efficacy pilot was conducted in BALB/c nude mice bearing human triple-negative breast cancer (MDA-MB-231) xenografts. RESULTS: The key findings were that (1) photodynamically active PSs (i.e., all except ZnPCS4) were able to effectively photosensitize cancer cells and non-cancerous cells; (2) following PDT, photodynamically active PSs were highly toxic-to-potent as per anti-cancer compound classification; (3) the photodynamically active PSs did not elicit notable systemic toxicity in zebrafish and chicken embryos; (4) ITL-delivered ZnPC and ZnPCS4 were associated with skin phototoxicity, while the aluminum-containing PSs did not exert detectable skin phototoxicity; and (5) ITL-delivered ZnPC and AlPC were equally effective in their tumor-killing capacity in human tumor breast cancer xenografts and superior to other non-phthalocyanine PSs when appraised on a per mole administered dose basis. CONCLUSIONS: AlPC(S4) are the safest and most effective PSs to integrate into the comprehensive tumor targeting and PS delivery platform. Pending further in vivo validation, these third-generation PSs may be used for multi-compartmental tumor photosensitization.


Assuntos
Colangiocarcinoma , Compostos Organometálicos , Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Células Endoteliais , Humanos , Lipossomos , Camundongos , Camundongos Nus , Compostos Organometálicos/farmacologia , Compostos Organometálicos/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Microambiente Tumoral , Peixe-Zebra
5.
Front Endocrinol (Lausanne) ; 13: 826920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370944

RESUMO

Precocious male maturation causes reduced welfare and increased production costs in Atlantic salmon (Salmo salar) aquaculture. The pituitary produces and releases follicle-stimulating hormone (Fsh), the gonadotropin triggering puberty in male salmonids. However, little is known about how Fsh production is regulated in Atlantic salmon. We examined, in vivo and ex vivo, transcriptional changes of gonadotropin-related genes accompanying the initial steps of testis maturation, in pituitaries of males exposed to photoperiod and temperature conditions promoting maturation (constant light and 16°C). Pituitary fshb, lhb and gnrhr2bba transcripts increased in vivo in maturing males (gonado-somatic index > 0.1%). RNA sequencing (RNAseq) analysis using pituitaries from genetically similar males carrying the same genetic predisposition to mature, but differing by responding or not responding to stimulatory environmental conditions, revealed 144 differentially expressed genes, ~2/3rds being up-regulated in responders, including fshb and other pituitary hormones, steroid-related and other puberty-associated transcripts. Functional enrichment analyses confirmed gene involvement in hormone/steroid production and gonad development. In ex vivo studies, whole pituitaries were exposed to a selection of hormones and growth factors. Gonadotropin-releasing hormone (Gnrh), 17ß-estradiol (E2) and 11-ketotestosterone (11-KT) up-regulated gnrhr2bba and lhb, while fshb was up-regulated by Gnrh but down-regulated by 11-KT in pituitaries from immature males. Also pituitaries from maturing males responded to Gnrh and sex steroids by increased gnrhr2bba and lhb transcript levels, but fshb expression remained unchanged. Growth factors (inhibin A, activin A and insulin-like growth factor 1) did not change gnrhr2bba, lhb or fshb transcript levels in pituitaries either from immature or maturing males. Additional pituitary ex vivo studies on candidates identified by RNAseq showed that these transcripts were preferentially regulated by Gnrh and sex steroids, but not by growth factors, and that Gnrh/sex steroids were less effective when incubating pituitaries from maturing males. Our results suggest that a yet to be characterized mechanism up-regulating fshb expression in the salmon pituitary is activated in response to stimulatory environmental conditions prior to morphological signs of testis maturation, and that the transcriptional program associated with this mechanism becomes unresponsive or less responsive to most stimulators ex vivo once males had entered pubertal developmental in vivo.


Assuntos
Salmo salar , Animais , Expressão Gênica , Gonadotropinas/metabolismo , Gonadotropinas/farmacologia , Gonadotropinas Hipofisárias/genética , Masculino , Salmo salar/genética , Salmo salar/metabolismo , Maturidade Sexual/genética
6.
Front Cell Dev Biol ; 9: 657192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33942021

RESUMO

Entering meiosis strictly depends on stimulated by retinoic acid 8 (Stra8) gene function in mammals. This gene is missing in a number of fish species, including medaka and zebrafish, but is present in the majority of fishes, including Atlantic salmon. Here, we have examined the effects of removing stra8 on male fertility in Atlantic salmon. As in mammals, stra8 expression was restricted to germ cells in the testis, transcript levels increased during the start of puberty, and decreased when blocking the production of retinoic acid. We targeted the salmon stra8 gene with two gRNAs one of these were highly effective and produced numerous mutations in stra8, which led to a loss of wild-type (WT) stra8 expression in F0 salmon testis. In maturing stra8 crispants, the spermatogenetic tubuli were partially disorganized and displayed a sevenfold increase in germ cell apoptosis, in particular among type B spermatogonia and spermatocytes. The production of spermatogenic cysts, on the other hand, increased in maturing stra8 crispants. Gene expression analysis revealed unchanged (lin28a, ret) or reduced levels (egr1, dusp4) of transcripts associated with undifferentiated spermatogonia. Decreased expression was recorded for some genes expressed in differentiating spermatogonia including dmrt1 and ccnd2 or in spermatocytes, such as ccna1. Different from Stra8-deficient mammals, a large number of germ cells completed spermatogenesis, sperm was produced and fertilization rates were similar in WT and crispant males. While loss of stra8 increased germ cell apoptosis during salmon spermatogenesis, crispants compensated this cell loss by an elevated production of spermatogenic cysts, and were able to produce functional sperm. It appears that also in a fish species with a stra8 gene in the genome, the critical relevance this gene has attained for mammalian spermatogenesis is not yet given, although detrimental effects of the loss of stra8 were clearly visible during maturation.

8.
Commun Biol ; 4(1): 204, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589679

RESUMO

Pituitary hormones can use local signaling molecules to regulate target tissue functions. In adult zebrafish testes, follicle-stimulating hormone (Fsh) strongly increases the production of insulin-like 3 (Insl3), a Leydig cell-derived growth factor found in all vertebrates. Little information is available regarding Insl3 function in adult spermatogenesis. The Insl3 receptors Rxfp2a and 2b were expressed by type A spermatogonia and Sertoli and myoid cells, respectively, in zebrafish testis tissue. Loss of insl3 increased germ cell apoptosis in males starting at 9 months of age, but spermatogenesis appeared normal in fully fertile, younger adults. Insl3 changed the expression of 409 testicular genes. Among others, retinoic acid (RA) signaling was up- and peroxisome proliferator-activated receptor gamma (Pparg) signaling was down-regulated. Follow-up studies showed that RA and Pparg signaling mediated Insl3 effects, resulting in the increased production of differentiating spermatogonia. This suggests that Insl3 recruits two locally active nuclear receptor pathways to implement pituitary (Fsh) stimulation of spermatogenesis.


Assuntos
Insulina/metabolismo , Proteínas/metabolismo , Células de Sertoli/metabolismo , Espermatogênese , Espermatogônias/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Apoptose , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Insulina/genética , Masculino , PPAR gama/genética , PPAR gama/metabolismo , Proteínas/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células de Sertoli/efeitos dos fármacos , Transdução de Sinais , Espermatogênese/efeitos dos fármacos , Espermatogônias/efeitos dos fármacos , Espermatogônias/patologia , Transcriptoma , Tretinoína/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
9.
BMC Genet ; 21(1): 123, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33183224

RESUMO

BACKGROUND: Farmed Atlantic salmon are one of the most economically significant global aquaculture products. Early sexual maturation of farmed males represents a significant challenge to this industry and has been linked with the vgll3 genotype. However, tools to aid research of this topic, such as all-male and clonal fish, are still lacking. The present 6-year study examined if all-male production is possible in Atlantic salmon, a species with heteromorphic sex chromosomes (males being XY, females XX), and if all-male fish can be applied to further explore the vgll3 contribution on the likelihood of early maturation. RESULTS: Estrogen treatment of mixed sex yolk sac larvae gave rise to one sexually mature hermaphrodite with a male genotype (XY) that was used to produce both self-fertilized offspring and androgenetic double haploid (dh) offspring following egg activation with UV treated sperm and pressure shock to block the first mitotic division. There were YY supermales among both offspring types, which were crossed with dh females. Between 1 and 8% of the putative all-male offspring from the eight crosses with self-fertilized supermales were found to have ovaries, and 95% of these phenotypic females were also genetically female. None of the offspring from the one dh supermale cross had ovaries. When assessing the general contribution of the vgll3 locus on the likelihood of early post-smolt sexual maturation (jacking) in the all-male populations we found individuals that were homozygous for the early maturing genotype (97%) were more likely to enter puberty than individuals that were homozygous for the late maturing genotype (26%). However, the likelihood of jacking within individuals with an early/late heterozygous genotype was higher when the early allele came from the dam (94%) compared to the sire (45%). CONCLUSIONS: The present results show that supermale Atlantic salmon are viable and fertile and can be used as a research tool to study important aspects of sexual maturation, such as to further explore the sex dependent parental genetic contribution to age at puberty in Atlantic salmon. In addition, we report the production of viable double haploid supermale fish.


Assuntos
Salmo salar/genética , Maturidade Sexual/genética , Alelos , Animais , Feminino , Fertilidade , Genótipo , Haploidia , Organismos Hermafroditas , Masculino , Fenótipo , Salmo salar/fisiologia , Fatores de Transcrição/genética
10.
Sci Rep ; 10(1): 18042, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093479

RESUMO

Genetic introgression of escaped farmed Atlantic salmon (Salmo salar) into wild populations is a major environmental concern for the salmon aquaculture industry. Using sterile fish in commercial aquaculture operations is, therefore, a sustainable strategy for bio-containment. So far, the only commercially used methodology for producing sterile fish is triploidization. However, triploid fish are less robust. A novel approach in which to achieve sterility is to produce germ cell-free salmon, which can be accomplished by knocking out the dead-end (dnd) gene using CRISPR-Cas9. The lack of germ cells in the resulting dnd crispants, thus, prevents reproduction and inhibits subsequent large-scale production of sterile fish. Here, we report a rescue approach for producing germ cells in Atlantic salmon dnd crispants. To achieve this, we co-injected the wild-type (wt) variant of salmon dnd mRNA together with CRISPR-Cas9 constructs targeting dnd into 1-cell stage embryos. We found that rescued one-year-old fish contained germ cells, type A spermatogonia in males and previtellogenic primary oocytes in females. The method presented here opens a possibility for large-scale production of germ-cell free Atlantic salmon offspring through the genetically sterile broodstock which can pass the sterility trait on the next generation.


Assuntos
Pesqueiros , Introgressão Genética/genética , Células Germinativas , Infertilidade/genética , Proteínas de Ligação a RNA/genética , Salmo salar/embriologia , Salmo salar/genética , Animais , Sistemas CRISPR-Cas , Feminino , Masculino , Oócitos , Característica Quantitativa Herdável , Espermatogônias , Triploidia
11.
J Endocrinol ; 244(1): 163-175, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31600720

RESUMO

Changes in zebrafish testicular gene expression induced by follicle-stimulating hormone (Fsh) or anti-Mullerian hormone (Amh) suggested that Amh inhibition and Fsh stimulation of spermatogenesis involved up and downregulation, respectively, of prostaglandin (PG) signaling. We found that Sertoli cells contacting type A undifferentiated (Aund) and differentiating (Adiff) spermatogonia expressed a key enzyme of PG production (Ptgs2); previous work showed that Sertoli cells contacting Adiff and B spermatogonia and spermatocytes showed ptges3b expression, an enzyme catalyzing PGE2 production. In primary testis tissue cultures, PGE2, but not PGD2 or PGF2α, reduced the mitotic activity of Adiff and their development into B spermatogonia. Vice versa, inhibiting PG production increased the mitotic activity of Adiff and B spermatogonia. Studies with pharmacological PG receptor antagonists suggest that an Ep4 receptor mediates the inhibitory effects on the development of spermatogonia, and cell-sorting experiments indicated this receptor is expressed mainly by testicular somatic cells. Combined inhibition of PG and steroid production moreover reduced the mitotic activity of Aund spermatogonia and led to their partial depletion, suggesting that androgens (and/or other testicular steroids), supported by PGE2, otherwise prevent depletion of Aund. Androgens also decreased testicular PGE2 production, increased the transcript levels of the enzyme-catabolizing PGs and decreased PGE2 receptor ptger4b transcript levels. Also Fsh potentially reduced, independent of androgens, PGE2 production by decreasing ptges3b transcript levels. Taken together, our results indicate that PGE2, via Ep4 receptors, favors self-renewal in conjunction with androgens and, independent of Fsh and androgens, inhibits differentiating divisions of spermatogonia.


Assuntos
Androgênios/metabolismo , Diferenciação Celular/genética , Dinoprostona/fisiologia , Hormônio Foliculoestimulante/metabolismo , Espermatogônias/metabolismo , Animais , Técnicas de Cultura de Células , Masculino , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Transdução de Sinais/genética , Testículo/citologia , Peixe-Zebra
12.
Development ; 146(21)2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31597660

RESUMO

Retinoic acid (RA) is crucial for mammalian spermatogonia differentiation, and stimulates Stra8 expression, a gene required for meiosis. Certain fish species, including zebrafish, have lost the stra8 gene. While RA still seems important for spermatogenesis in fish, it is not known which stage(s) respond to RA or whether its effects are integrated into the endocrine regulation of spermatogenesis. In zebrafish, RA promoted spermatogonia differentiation, supported androgen-stimulated meiosis, and reduced spermatocyte and spermatid apoptosis. Follicle-stimulating hormone (Fsh) stimulated RA production. Expressing a dominant-negative RA receptor variant in germ cells clearly disturbed spermatogenesis but meiosis and spermiogenesis still took place, although sperm quality was low in 6-month-old adults. This condition also activated Leydig cells. Three months later, spermatogenesis apparently had recovered, but doubling of testis weight demonstrated hypertrophy, apoptosis/DNA damage among spermatids was high and sperm quality remained low. We conclude that RA signaling is important for zebrafish spermatogenesis but is not of crucial relevance. As Fsh stimulates androgen and RA production, germ cell-mediated, RA-dependent reduction of Leydig cell activity may form a hitherto unknown intratesticular negative-feedback loop.


Assuntos
Androgênios/fisiologia , Sistema Endócrino/fisiologia , Hormônio Foliculoestimulante/fisiologia , Transdução de Sinais , Espermatogênese , Tretinoína/fisiologia , Animais , Bussulfano/química , Diferenciação Celular/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Retinoides/fisiologia , Espermátides/fisiologia , Espermatócitos/fisiologia , Espermatogônias/fisiologia , Testículo/fisiologia , Transgenes , Peixe-Zebra
13.
Gen Comp Endocrinol ; 284: 113244, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31415728

RESUMO

Spermatogenesis is a cellular developmental process characterized by the coordinated proliferation and differentiation activities of somatic and germ cells in order to produce a large number of spermatozoa, the cellular basis of male fertility. Somatic cells in the testis, such as Leydig, peritubular myoid and Sertoli cells, provide structural and metabolic support and contribute to the regulatory microenvironment required for proper germ cell survival and development. The pituitary follicle-stimulating hormone (Fsh) is a major endocrine regulator of vertebrate spermatogenesis, targeting somatic cell functions in the testes. In fish, Fsh regulates Leydig and Sertoli cell functions, such as sex steroid and growth factor production, processes that also control the development of spermatogonia, the germ cell stages at the basis of the spermatogenic process. Here, we summarize recent advances in our understanding of mechanisms used by Fsh to regulate the development of spermatogonia. This involves discussing the roles of insulin-like growth factor (Igf) 3 and canonical and non-canonical Wnt signaling pathways. We will also discuss how these locally active regulatory systems interact to maintain testis tissue homeostasis.


Assuntos
Envelhecimento/metabolismo , Hormônio Foliculoestimulante/metabolismo , Somatomedinas/metabolismo , Espermatogônias/crescimento & desenvolvimento , Testículo/metabolismo , Via de Sinalização Wnt , Peixe-Zebra/metabolismo , Animais , Masculino , Espermatogônias/citologia
14.
Reprod Biol Endocrinol ; 17(1): 57, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311551

RESUMO

Following publication of the original article [1], the authors would like to apologize for an error in Fig. 5e, the correct graph is presented below and shows the significant increase in pituitary mRNA levels of fshb in recruited males in the SGA stage.

16.
BMC Genomics ; 20(1): 475, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185904

RESUMO

BACKGROUND: When puberty starts before males reach harvest size, animal welfare and sustainability issues occur in Atlantic salmon (Salmo salar) aquaculture. Hallmarks of male puberty are an increased proliferation activity in the testis and elevated androgen production. Examining transcriptional changes in salmon testis during the transition from immature to maturing testes may help understanding the regulation of puberty, potentially leading to procedures to modulate its start. Since differences in body weight influence, via unknown mechanisms, the chances for entering puberty, we used two feed rations to create body weight differences. RESULTS: Maturing testes were characterized by an elevated proliferation activity of Sertoli cells and of single undifferentiated spermatogonia. Pituitary gene expression data suggest increased Gnrh receptor and gonadotropin gene expression, potentially responsible for the elevated circulating androgen levels in maturing fish. Transcriptional changes in maturing testes included a broad variety of signaling systems (e.g. Tgfß, Wnt, insulin/Igf, nuclear receptors), but also, activation of metabolic pathways such as anaerobic metabolism and protection against ROS. Feed restriction lowered the incidence of puberty. In males maturing despite feed restriction, plasma androgen levels were higher than in maturing fish receiving the full ration. A group of 449 genes that were up-regulated in maturing fully fed fish, was up-regulated more prominently in testis from fish maturing under caloric restriction. Moreover, 421 genes were specifically up-regulated in testes from fish maturing under caloric restriction, including carbon metabolism genes, a pathway relevant for nucleotide biosynthesis and for placing epigenetic marks. CONCLUSIONS: Undifferentiated spermatogonia and Sertoli cell populations increased at the beginning of puberty, which was associated with the up-regulation of metabolic pathways (e.g. anaerobic and ROS pathways) known from other stem cell systems. The higher androgen levels in males maturing under caloric restriction may be responsible for the stronger up-regulation of a common set of (449) maturation-associated genes, and the specific up-regulation of another set of (421) genes. The latter opened regulatory and/or metabolic options for initiating puberty despite feed restriction. As a means to reduce the incidence of male puberty in salmon, however, caloric restriction seems unsuitable.


Assuntos
Metabolismo Energético , Regulação da Expressão Gênica no Desenvolvimento , Salmo salar/crescimento & desenvolvimento , Salmo salar/genética , Maturidade Sexual/genética , Testículo/metabolismo , Animais , Perfilação da Expressão Gênica , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Salmo salar/metabolismo , Testículo/fisiologia
17.
Reprod Biol Endocrinol ; 17(1): 48, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31226998

RESUMO

BACKGROUND: Puberty in male Atlantic salmon in aquaculture can start as early as after the first winter in seawater, stunts growth and entails welfare problems due to the maturation-associated loss of osmoregulation capacity in seawater. A better understanding of the regulation of puberty is the basis for developing improved cultivation approaches that avoid these problems. Our aim here was to identify morphological and molecular markers signaling the initiation of, and potential involvement in, testis maturation. METHODS: In the first experiment, we monitored for the first time in large Atlantic salmon males several reproductive parameters during 17 months including the first reproductive cycle. Since testicular growth accelerated after the Winter solstice, we focused in the second experiment on the 5 months following the winter solstice, exposing fish from February 1 onwards to the natural photoperiod (NL) or to continuous additional light (LL). RESULTS: In the first experiment, testis weight, plasma androgens and pituitary gonadotropin transcript levels increased with the appearance of type B spermatogonia in the testis, but testicular transcript levels for gonadotropin or androgen receptors did not change while being clearly detectable. In the second experiment, all males kept under NL had been recruited into puberty until June. However, recruitment into puberty was blocked in ~ 40% of the males exposed to LL. The first morphological sign of recruitment was an increased proliferation activity of single spermatogonia and Sertoli cells. Irrespective of the photoperiod, this early sign of testis maturation was accompanied by elevated pituitary gnrhr4 and fshb and testicular igf3 transcript levels as well as increased plasma androgen levels. The transition into puberty occurred again with stable testicular gonadotropin and androgen receptor transcript levels. CONCLUSIONS: The sensitivity to reproductive hormones is already established before puberty starts and up-regulation of testicular hormone receptor expression is not required to facilitate entry into puberty. The increased availability of receptor ligands, on the other hand, may result from an up-regulation of pituitary Gnrh receptor expression, eventually activating testicular growth factor and sex steroid release and driving germ and Sertoli cell proliferation and differentiation.


Assuntos
Hormônios Esteroides Gonadais/metabolismo , Receptores de Esteroides/metabolismo , Salmo salar/metabolismo , Maturidade Sexual , Testículo/metabolismo , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/efeitos da radiação , Masculino , Fotoperíodo , Hipófise/metabolismo , Receptores do FSH/genética , Receptores do FSH/metabolismo , Receptores de Esteroides/genética , Reprodução/genética , Reprodução/fisiologia , Salmo salar/genética , Estações do Ano , Água do Mar
18.
Artigo em Inglês | MEDLINE | ID: mdl-30885831

RESUMO

Environmental conditions are known to contribute to the phenotypic plasticity in the age of sexual maturation of Atlantic salmon (Salmo salar). Here, we report on an observation of out-of-season male Atlantic salmon initiating puberty as pre-smolts (jacks) but failing to complete maturation as post-smolts. Jacks were identified based on elevated plasma 11-ketotestosterone (range, 3-12 ng/ml) and the occurrence of type B spermatogonia in January 2017. However, these males failed to show running milt as post-smolts at the expected time in May 2017. Subsequently, 6 out of the 21 (32%) suspected "terminated jacks" went on to become grilse, whereas only 1 of the 22 (5%) males that showed no signs of initiating puberty in January became grilse in December 2017. Therefore, "terminated" jacks were more likely to mature as grilse than the males that remained immature. Why these pubertal pre-smolt males did not complete maturation is unclear but could be related to the transfer of fish from conditions of warm water and long days, risk factors for early maturation, to conditions of cold water and short days, which are expected to delay the age of maturation. We provide a description of the conditions under which male Atlantic salmon appear to have terminated the process of sexual maturation.


Assuntos
Salmo salar/fisiologia , Maturidade Sexual , Animais , Masculino , Salmo salar/crescimento & desenvolvimento , Estações do Ano
19.
J Endocrinol ; 239(3): 351-363, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30400013

RESUMO

Follicle-stimulating hormone (Fsh) modulates vertebrate spermatogenesis by regulating somatic cell functions in the testis. We have found previously that zebrafish Fsh stimulated the differentiating proliferation of type A undifferentiated spermatogonia (Aund) in an androgen-independent manner by regulating the production of growth factors and other signaling molecules in both Sertoli (SCs) and Leydig cells (LCs). For example, Fsh triggered the release of Igf3 that subsequently activated ß-catenin signaling to promote the differentiating proliferation of Aund. In the present study, we report that Fsh moreover uses the non-canonical Wnt pathway to promote the proliferation and accumulation of Aund. Initially, we found that the stimulatory effect of Fsh on the proliferation activity of Aund was further strengthened when ß-catenin signaling was inhibited, resulting in an accumulation of Aund. We then showed that this Fsh-induced accumulation of Aund was associated with increased transcript levels of the non-canonical Wnt ligand, wnt5a. In situ hybridization of insl3 mRNA, a gene expressed in LCs, combined with Wnt5a immunocytochemistry identified LCs as the cellular source of Wnt5a in the adult zebrafish testis. Addition of an antagonist of Wnt5a to incubations with Fsh decreased both the proliferation activity and the relative section area occupied by Aund, while an agonist of Wnt5a increased these same parameters for Aund. Taken together, our data suggest that Fsh triggered LCs to release Wnt5a, which then promoted the proliferation and accumulation of Aund. Hence, Fsh uses non-canonical Wnt signaling to ensure the production of Aund, while also triggering ß-catenin signaling via Igf3 to ensure spermatogonial differentiation.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Células Intersticiais do Testículo/metabolismo , Espermatogônias/fisiologia , Via de Sinalização Wnt , Proteína Wnt-5a/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Diferenciação Celular , Autorrenovação Celular , Masculino , Células de Sertoli/fisiologia , Peixe-Zebra , beta Catenina/metabolismo
20.
Physiol Rep ; 6(17): e13809, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30175449

RESUMO

We present data from two experiments that examined how the developmental processes of smoltification and sexual maturation proceed in parallel in domesticated Atlantic salmon. Onset of maturation and smoltification was stimulated using temperature and photoperiod. Our observations on gonadosomatic index (GSI), spermatogenic activity, gill Na+, K+-ATPase enzyme (NKA) activity, and plasma 11-ketotestosterone (11-KT), Na, Cl, and Ca show that smoltification and maturation were both triggered and developed in parallel in male Atlantic salmon, but that the progressing maturation impaired hypoosmoregulation. Female maturation started after completion of smoltification. Furthermore, we present data showing that domesticated salmon can physiologically smoltify-desmoltify-resmoltify within a short period of time, and that development of a secondary sexual characteristic, such as a kype, depends on size in male postsmolts.


Assuntos
Domesticação , Salmão/crescimento & desenvolvimento , Maturidade Sexual , Animais , Feminino , Proteínas de Peixes/metabolismo , Brânquias/crescimento & desenvolvimento , Brânquias/metabolismo , Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Masculino , Fotoperíodo , Salmão/metabolismo , Salmão/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Temperatura , Testosterona/análogos & derivados , Testosterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA