Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Methods Mol Biol ; 2684: 101-109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37410229

RESUMO

The human COMPASS complexes regulate gene expression during development and cell differentiation. Three distinct subunits, KMT2C, KMT2D, and KDM6A (also known as UTX), are frequently mutated in urothelial carcinoma, possibly disrupting the formation of functional COMPASS complexes. Here, we describe methods to evaluate the formation of these large native protein complexes in urothelial carcinoma (UC) cell lines harboring different mutations in KMT2C/D. To this end COMPASS complexes were purified from nuclear extracts by size exclusion chromatography (SEC) using a Sepharose 6 column. SEC fractions were then separated by 3-8% Tris-acetate gradient polyacrylamide gel and the COMPASS complex subunits KMT2C, UTX, WDR5, and RBBP5 were detected by immunoblotting. In this fashion, the formation of a COMPASS complex could be observed in UC cells with wild-type but not in cells with mutant KMT2C and KMTD.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Núcleo Celular , Diferenciação Celular , Cromatografia em Gel , Peptídeos e Proteínas de Sinalização Intracelular
2.
Sci Data ; 9(1): 240, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624179

RESUMO

Urothelial carcinoma (UC) of the urinary bladder is a prevalent cancer worldwide. Because histone deacetylases (HDACs) are important factors in cancer, targeting these epigenetic regulators is considered an attractive strategy to develop novel anticancer drugs. Whereas HDAC1 and HDAC2 promote UC, HDAC5 is often downregulated and only weakly expressed in UC cell lines, suggesting a tumor-suppressive function. We studied the effect of stable lentiviral-mediated HDAC5 overexpression in four UC cell lines with different phenotypes (RT112, VM-Cub-1, SW1710, and UM-UC-3, each with vector controls). In particular, comprehensive proteomics and RNA-seq transcriptomics analyses were performed on the four cell line pairs, which are described here. For comparison, the immortalized benign urothelial cell line HBLAK was included. These datasets will be a useful resource for researchers studying UC, and especially the influence of HDAC5 on epithelial-mesenchymal transition (EMT). Moreover, these data will inform studies on HDAC5 as a less studied member of the HDAC family in other cell types and diseases, especially fibrosis.


Assuntos
Carcinoma de Células de Transição , Histona Desacetilases , Neoplasias da Bexiga Urinária , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/metabolismo , Linhagem Celular Tumoral , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Proteômica , Transcriptoma , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo
4.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163453

RESUMO

Epigenetic mechanisms are fundamentally important for cancer initiation and development. However, a survey of the literature reveals that, to date, they appear less comprehensively investigated in melanoma than in many other cancers, e.g., prostate, breast, and colon carcinoma. The aim of this review is to provide a short summary of epigenetic aspects of functional relevance for melanoma pathogenesis. In addition, some new perspectives from epigenetic research in other cancers with potential for melanoma diagnosis and therapy are introduced. For example, the PrimeEpiHit hypothesis in urothelial carcinoma, which, similarly to malignant melanoma, can also be triggered by a single exogenous noxa, states that one of the first steps for cancer initiation could be epigenetic changes in key genes of one-carbon metabolism. The application of such insights may contribute to further progress in the diagnosis and therapy of melanoma, a deadly type of cancer.


Assuntos
Epigênese Genética , Redes Reguladoras de Genes , Melanoma/genética , Metilação de DNA , Detecção Precoce de Câncer , Humanos , Melanoma/diagnóstico , Melanoma/terapia
5.
Cancers (Basel) ; 13(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885146

RESUMO

Urothelial carcinoma (UC) is the most frequent histological type of cancer in the urinary bladder. Genomic changes in UC activate MAPK and PI3K/AKT signal transduction pathways, which increase cell proliferation and survival, interfere with cell cycle and checkpoint control, and prevent senescence. A more recently discovered additional category of genetic changes in UC affects chromatin regulators, including histone-modifying enzymes (KMT2C, KMT2D, KDM6A, EZH2), transcription cofactors (CREBBP, EP300), and components of the chromatin remodeling complex SWI/SNF (ARID1A, SMARCA4). It is not yet well understood how these changes contribute to the development and progression of UC. Therefore, we review here the emerging knowledge on genomic and gene expression alterations of chromatin regulators and their consequences for cell differentiation, cellular plasticity, and clonal expansion during UC pathogenesis. Our analysis identifies additional relevant chromatin regulators and suggests a model for urothelial carcinogenesis as a basis for further mechanistic studies and targeted therapy development.

6.
Anticancer Res ; 41(12): 5987-5996, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34848452

RESUMO

BACKGROUND/AIM: Simultaneous inhibition of histone deacetylase and proteasomes induces endoplasmic reticulum (ER) stress efficiently. RTS-V5 is the first dual histone deacetylase-proteasome inhibitor, and we anticipated that combining it with the cytochrome P450 family 3 subfamily A member 4 inhibitor ritonavir would enhance its activity in bladder cancer cells. MATERIALS AND METHODS: Using bladder cancer cells (human T-24, J-82, murine MBT-2), we evaluated the ability and mechanism by which the combination of RTS-V5 and ritonavir induced ER stress and killed cancer cells. RESULTS: The combination of RTS-V5 and ritonavir triggered robust apoptosis and inhibited bladder cancer growth effectively in vitro and in vivo. It caused ubiquitinated protein accumulation and induced ER stress synergistically. The combination inhibited the mammalian target of rapamycin pathway by increasing the expression of AMP-activated protein kinase. We also found that the combination caused histone and tubulin hyperacetylation. CONCLUSION: Ritonavir enhances the ability of RTS-V5 to cause ER stress in bladder cancer cells.


Assuntos
Antineoplásicos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Proteassoma/farmacologia , Ritonavir/farmacologia , Acetilação/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Histonas/metabolismo , Humanos , Camundongos , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Bexiga Urinária , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Anticancer Res ; 41(6): 2901-2912, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34083281

RESUMO

BACKGROUND/AIM: Activation of the ubiquitin-proteasome system (UPS) has been shown to be associated with drug resistance in cancer. Using bladder cancer cells, we investigated the association between UPS activation and cisplatin resistance and also the efficacy of UPS-targeting drugs. MATERIALS AND METHODS: We established cisplatin-resistant bladder cancer cells (J82-cisR, T24-cisR) and examined the activation status of the UPS and the efficacy of MLN7243, oprozomib, ixazomib, and RTS-V5. RESULTS: The UPS in cisplatin-resistant bladder cancer cells was activated compared to that in their parental controls. All the UPS-targeting drugs induced apoptosis and inhibited growth more effectively in the cisplatin-resistant bladder cancer cells than they did in the parental controls. Furthermore, these UPS-targeting drugs induced endoplasmic reticulum stress by causing unfolded protein accumulation at lower concentrations in the cisplatin-resistant bladder cancer cells. CONCLUSION: Targeting the UPS could be an effective strategy for treating cisplatin-resistant bladder cancer.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Neoplasias da Bexiga Urinária/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos
8.
Cancers (Basel) ; 13(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803654

RESUMO

Muscle-invasive urothelial carcinoma (UC) is treated with cisplatin-based chemotherapy, which is only moderately efficient, mostly due to development of resistance. New therapy approaches are therefore urgently needed. Epigenetic alterations due to frequent mutations in epigenetic regulators contribute to development of the disease and to treatment resistance, and provide targets for novel drug combination therapies. Here, we determined the cytotoxic impact of the second-generation bromodomain protein inhibitor (BETi) PLX51107 on UC cell lines (UCC) and normal HBLAK control cells. PLX51107 inhibited proliferation, induced apoptosis, and acted synergistically with the histone deacetylase inhibitor romidepsin. While PLX51107 caused significant DNA damage, DNA damage signaling and DNA repair were impeded, a state defined as BRCAness. Accordingly, the drug strongly synergized with cisplatin more efficiently than romidepsin, and with the PARP inhibitor talazoparib to inhibit proliferation and induce cell death in UCC. Thus, a BETi can be used to "episensitize" UC cells to cytotoxic chemotherapy and inhibitors of DNA repair by inducing BRCAness in non BRCA1/2 mutated cancers. In clinical applications, the synergy between PLX51107 and other drugs should permit significant dosage reductions to minimize effects on normal tissues.

9.
Genes (Basel) ; 12(2)2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670166

RESUMO

Since genes encoding epigenetic regulators are often mutated or deregulated in urothelial carcinoma (UC), they represent promising therapeutic targets. Specifically, inhibition of Class-I histone deacetylase (HDAC) isoenzymes induces cell death in UC cell lines (UCC) and, in contrast to other cancer types, cell cycle arrest in G2/M. Here, we investigated whether mutations in cell cycle genes contribute to G2/M rather than G1 arrest, identified the precise point of arrest and clarified the function of individual HDAC Class-I isoenzymes. Database analyses of UC tissues and cell lines revealed mutations in G1/S, but not G2/M checkpoint regulators. Using class I-specific HDAC inhibitors (HDACi) with different isoenzyme specificity (Romidepsin, Entinostat, RGFP966), cell cycle arrest was shown to occur at the G2/M transition and to depend on inhibition of HDAC1/2 rather than HDAC3. Since HDAC1/2 inhibition caused cell-type-specific downregulation of genes encoding G2/M regulators, the WEE1 inhibitor MK-1775 could not overcome G2/M checkpoint arrest and therefore did not synergize with Romidepsin inhibiting HDAC1/2. Instead, since DNA damage was induced by inhibition of HDAC1/2, but not of HDAC3, combinations between inhibitors of HDAC1/2 and of DNA repair should be attempted.


Assuntos
Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Acrilamidas/farmacologia , Benzamidas/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Depsipeptídeos/farmacologia , Sinergismo Farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular , Genes cdc/efeitos dos fármacos , Histona Desacetilase 1/antagonistas & inibidores , Humanos , Fenilenodiaminas/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Pirimidinonas/farmacologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
10.
Sci Rep ; 10(1): 22127, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335196

RESUMO

LINE-1 hypomethylation of cell-free DNA has been described as an epigenetic biomarker of human aging. However, in the past, insufficient differentiation between cellular and cell-free DNA may have confounded analyses of genome-wide methylation levels in aging cells. Here we present a new methodological strategy to properly and unambiguously extract DNA methylation patterns of repetitive, as well as single genetic loci from pure cell-free DNA from peripheral blood. Since this nucleic acid fraction originates mainly in apoptotic, senescent and cancerous cells, this approach allows efficient analysis of aged and cancerous cell-specific DNA methylation patterns for diagnostic and prognostic purposes. Using this methodology, we observe a significant age-associated erosion of LINE-1 methylation in cfDNA suggesting that the threshold of hypomethylation sufficient for relevant LINE-1 activation and consequential harmful retrotransposition might be reached at higher age. We speculate that this process might contribute to making aging the main risk factor for many cancers.


Assuntos
Envelhecimento/genética , Ácidos Nucleicos Livres , Metilação de DNA , Epigênese Genética , Epigenômica , Elementos Nucleotídeos Longos e Dispersos , Retroelementos , Adulto , Fatores Etários , Biomarcadores , Epigenômica/métodos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas
11.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322422

RESUMO

Human genomes contain about 100,000 LINE-1 (L1) retroelements, of which more than 100 are intact. L1s are normally tightly controlled by epigenetic mechanisms, which often fail in cancer. In bladder urothelial carcinoma (UC), particularly, L1s become DNA-hypomethylated, expressed and contribute to genomic instability and tumor growth. It is, however, unknown which individual L1s are activated. Following RNA-immunoprecipitation with a L1-specific antibody, third generation nanopore sequencing detected transcripts of 90 individual elements in the VM-Cub-1 UC line with high overall L1 expression. In total, 10 L1s accounted for >60% of the reads. Analysis of five specific L1s by RT-qPCR revealed generally increased expression in UC tissues and cell lines over normal controls, but variable expression among tumor cell lines from bladder, prostate and testicular cancer. Chromatin immunoprecipitation demonstrated active histone marks at L1 sequences with increased expression in VM-Cub-1, but not in a different UC cell line with low L1 expression. We conclude that many L1 elements are epigenetically activated in bladder cancer in a varied pattern. Our findings indicate that expression of individual L1s is highly heterogeneous between and among cancer types.


Assuntos
Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Neoplasias Testiculares/genética , Idoso , Idoso de 80 Anos ou mais , Imunoprecipitação da Cromatina , Metilação de DNA/genética , Metilação de DNA/fisiologia , Feminino , Histonas/metabolismo , Humanos , Imunoprecipitação , Masculino , Pessoa de Meia-Idade , Sequenciamento por Nanoporos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Int J Mol Sci ; 21(13)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635356

RESUMO

Histone deacetylase inhibitors (HDACi) are already approved for the therapy of leukemias. Since they are also emerging candidate compounds for the treatment of non-malignant diseases, HDACi with a wide therapeutic window and low hazard potential are desirable. Here, we investigated a panel of 12 novel hydroxamic acid- and benzamide-type HDACi employing non-malignant V79 hamster cells as toxicology guideline-conform in vitro model. HDACi causing a ≥10-fold preferential cytotoxicity in malignant neuroblastoma over non-malignant V79 cells were selected for further genotoxic hazard analysis, including vorinostat and entinostat for control. All HDACi selected, (i.e., KSK64, TOK77, DDK137 and MPK77) were clastogenic and evoked DNA strand breaks in non-malignant V79 cells as demonstrated by micronucleus and comet assays, histone H2AX foci formation analyses (γH2AX), DNA damage response (DDR) assays as well as employing DNA double-strand break (DSB) repair-defective VC8 hamster cells. Genetic instability induced by hydroxamic acid-type HDACi seems to be independent of bulky DNA adduct formation as concluded from the analysis of nucleotide excision repair (NER) deficient mutants. Summarizing, KSK64 revealed the highest genotoxic hazard and DDR stimulating potential, while TOK77 and MPK77 showed the lowest DNA damaging capacity. Therefore, these compounds are suggested as the most promising novel candidate HDACi for subsequent pre-clinical in vivo studies.


Assuntos
Benzamidas/toxicidade , Inibidores de Histona Desacetilases/toxicidade , Ácidos Hidroxâmicos/toxicidade , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Ensaio Cometa , Cricetinae , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Histonas/química , Histonas/metabolismo , Humanos , Testes para Micronúcleos , Fosforilação , Vorinostat/toxicidade
13.
Cancers (Basel) ; 12(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326336

RESUMO

The histone demethylase UTX (gene: KDM6A) directs cell and tissue differentiation during development. Deleterious mutations in KDM6A occur in many human cancers, most frequently in urothelial carcinoma. The consequences of these mutations are poorly understood; plausibly, they may disturb urothelial differentiation. We therefore investigated the effects of UTX siRNA-mediated knockdown in two in vitro models of urothelial differentiation; namely, primary cultures of urothelial epithelial cells treated with troglitazone and PD153035 and the immortalized urothelial cell line HBLAK treated with high calcium and serum. In both models, efficient UTX knockdown did not block morphological and biochemical differentiation. An apparent delay was due to a cytotoxic effect on the cell cultures before the initiation of differentiation, which induced apoptosis partly in a p53-dependent manner. As a consequence, slowly cycling, smaller, KRT14high precursor cells in the HBLAK cell line were enriched at the expense of more differentiated, larger, proliferating KRT14low cells. UTX knockdown induced apoptosis and enriched KRT14high cells in the BFTC-905 papillary urothelial carcinoma cell line as well. Our findings suggest an explanation for the frequent occurrence of KDM6A mutations across all stages and molecular subtypes of urothelial carcinoma, whereby loss of UTX function does not primarily impede later stages of urothelial differentiation, but favors the expansion of precursor populations to provide a reservoir of potential tumor-initiating cells.

14.
Sci Rep ; 10(1): 3808, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123240

RESUMO

Urothelial carcinoma (UC) is a common disease causing significant morbidity and mortality as well as considerable costs for health systems. Extensive aberrant methylation of DNA is broadly documented in early UC, contributing to genetic instability, altered gene expression and tumor progression. However the triggers initiating aberrant methylation are unknown. Recently we discovered that several genes encoding key enzymes of methyl group and polyamine metabolism, including Ornithine Decarboxylase 1 (ODC1), are affected by DNA methylation in early stage UC. In this study, we investigated the hypothesis that these epigenetic alterations act in a feed-forward fashion to promote aberrant DNA methylation in UC. We demonstrate that siRNA-mediated knockdown of ODC1 expression elicits genome-wide LINE-1 demethylation, induction of LINE-1 transcripts and double-strand DNA breaks and decreases viability in primary cultured uroepithelial cells. Similarly, following siRNA-mediated knockdown of ODC1, UC cells undergo double-strand DNA breaks and apoptosis. Collectively, our findings provide evidence that ODC1 gene hypermethylation could be a starting point for the onset of genome-wide epigenetic aberrations in urothelial carcinogenesis. Furthermore, LINE-1 induction enabled by ODC1 interference provides a new experimental model to study mechanisms and consequences of LINE-1 activation in the etiology and progression of UC as well as presumably other cancers.


Assuntos
Epigênese Genética , Ornitina Descarboxilase/deficiência , Ornitina Descarboxilase/genética , Interferência de RNA , Neoplasias Urológicas/patologia , Urotélio/patologia , Apoptose/genética , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Humanos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
15.
Cancers (Basel) ; 12(2)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028599

RESUMO

Occurrence of cisplatin-resistance in bladder cancer is frequent and results in disease progression. Thus, novel therapeutic approaches are a high medical need for patients suffering from chemotherapy failure. The purpose of this study was to test the combination of the DNA methyltransferase inhibitor decitabine (DAC) with the histone deacetylase inhibitor entinostat (ENT) in bladder cancer cells with different platinum sensitivities: J82, cisplatin-resistant J82CisR, and RT-112. Intermittent treatment of J82 cells with cisplatin resulted in the six-fold more cisplatin-resistant cell line J82CisR. Combinations of DAC and/or ENT plus cisplatin could not reverse chemoresistance. However, the combination of DAC and ENT acted cytotoxic in a highly synergistic manner as shown by Chou-Talalay analysis via induction of apoptosis and cell cycle arrest. Importantly, this effect was cancer cell-selective as no synergism was found for the combination in the non-cancerous urothelial cell line HBLAK. Expression analysis indicated that epigenetic treatment led to up-regulation of forkhead box class O1 (FoxO1) and further activated proapoptotic Bim and the cell cycle regulator p21 and reduced expression of survivin in J82CisR. In conclusion, the combination of DAC and ENT is highly synergistic and has a promising potential for therapy of bladder cancer, particularly in cases with platinum resistance.

16.
Sci Rep ; 9(1): 14476, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31597922

RESUMO

The DNA-damaging compound cisplatin is broadly employed for cancer chemotherapy. The mutagenic effects of cisplatin on cancer cell genomes are poorly studied and might even contribute to drug resistance. We have therefore analyzed mutations and chromosomal alterations in four cisplatin-resistant bladder cancer cell lines (LTTs) by whole-exome-sequencing and array-CGH. 720-7479 genes in the LTTs contained point mutations, with a characteristic mutational signature. Only 53 genes were mutated in all LTTs, including the presumed cisplatin exporter ATP7B. Chromosomal alterations were characterized by segmented deletions and gains leading to severely altered karyotypes. The few chromosomal changes shared among LTTs included gains involving the anti-apoptotic BCL2L1 gene and losses involving the NRF2 regulator KEAP1. Overall, the extent of genomic changes paralleled cisplatin treatment concentrations. In conclusion, bladder cancer cell lines selected for cisplatin-resistance contain abundant and characteristic drug-induced genomic changes. Cisplatin treatment may therefore generate novel tumor genomes during patient treatment.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Aberrações Cromossômicas , Hibridização Genômica Comparativa , ATPases Transportadoras de Cobre/genética , Humanos , Cariótipo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Mutação , Sequenciamento do Exoma , Proteína bcl-X/genética
17.
Int J Mol Sci ; 20(19)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561442

RESUMO

The major urological cancers comprise prostate adenocarcinoma, urinary bladder (or upper urinary tract) carcinoma, renal cell carcinoma, testicular cancer and penile carcinoma, in this order of incidence, each with various histological and molecular subtypes [...].


Assuntos
Epigênese Genética , Neoplasias Urológicas/genética , Epigenômica/métodos , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Prognóstico , Neoplasias Urológicas/diagnóstico , Neoplasias Urológicas/mortalidade , Neoplasias Urológicas/terapia
18.
BMC Cancer ; 19(1): 806, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412811

RESUMO

BACKGROUND: Few diagnostic and prognostic biomarkers are available for head-and-neck squamous cell carcinoma (HNSCC). Long non-coding RNAs (lncRNAs) have shown promise as biomarkers in other cancer types and in some cases functionally contribute to tumor development and progression. Here, we searched for lncRNAs useful as biomarkers in HNSCC. METHODS: Public datasets were mined for lncRNA candidates. Two independent HNSCC tissue sets and a bladder cancer tissue set were analyzed by RT-qPCR. Effects of lncRNA overexpression or downregulation on cell proliferation, clonogenicity, migration and chemosensitivity were studied in HNSCC cell lines. RESULTS: Data mining revealed prominently CASC9, a lncRNA significantly overexpressed in HNSCC tumor tissues according to the TCGA RNAseq data. Overexpression was confirmed by RT-qPCR analyses of patient tissues from two independent cohorts. CASC9 expression discriminated tumors from normal tissues with even higher specificity than HOTAIR, a lncRNA previously suggested as an HNSCC biomarker. Specificity of HNSCC detection by CASC9 was further improved by combination with HOTAIR. Analysis of TCGA pan-cancer data revealed significant overexpression of CASC9 across different other entities including bladder, liver, lung and stomach cancers and especially in squamous cell carcinoma (SCC) of the lung. By RT-qPCR analysis we furthermore detected stronger CASC9 overexpression in pure SCC of the urinary bladder and mixed urothelial carcinoma with squamous differentiation than in pure urothelial carcinomas. Thus, CASC9 might represent a general diagnostic biomarker and particularly for SCCs. Unexpectedly, up- or downregulation of CASC9 expression in HNSCC cell lines with low or high CASC9 expression, respectively, did not result in significant changes of cell viability, clonogenicity, migration or chemosensitivity. CONCLUSIONS: CASC9 is a promising biomarker for HNSCC detection. While regularly overexpressed, however, this lncRNA does not seem to act as a major driver of development or progression in this tumor.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/genética , RNA Longo não Codificante/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Regulação para Cima , Idoso , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Pessoa de Meia-Idade , Prognóstico , Sensibilidade e Especificidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
19.
mBio ; 10(4)2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455647

RESUMO

Macrophages and dendritic cells dominate early immune responses to lentiviruses. HIV-1 sensing by pathogen recognition receptors induces signaling cascades that culminate in type I alpha/beta interferon (IFN-α/ß) induction. IFN-α/ß signals back via the IFN-α/ß receptors, inducing a plethora of IFN-stimulated gene (ISGs), including ISG15, p53, and p21Cip1 p21 inhibits HIV-1 replication by inactivating the deoxynucleoside triphosphate (dNTP) biosynthesis pathway and activating the restriction factor SAMHD1. p21 is induced by functional p53. ISG15-specific isopeptidase USP18 negatively regulates IFN signaling. We showed previously that USP18 contributes to HIV-1 replication by abrogating p21 antiviral function. Here, we demonstrate a mechanism by which USP18 mediates p21 downregulation in myeloid cells. USP18, by its protease activity, accumulates misfolded p53, which requires ISG15 for its degradation. Depletion of ISG15 causes accumulation of misfolded dominant negative p53, which enhances HIV-1 replication. This work clarifies the function and consequences of p53 modification by ISG15 and implicates USP18 in HIV-1 infection and potentially in carcinogenesis.IMPORTANCE HIV-1 has evolved many strategies to circumvent the host's antiviral innate immune responses and establishes disseminated infection; the molecular mechanisms of these strategies are not entirely clear. We showed previously that USP18 contributes to HIV-1 replication by abrogating p21 antiviral function. Here, we demonstrate a mechanism by which USP18 mediates p21 downregulation in myeloid cells. USP18, by its protease activity, accumulates misfolded p53, which requires ISG15 for clearance. Depletion of ISG15 causes accumulation of misfolded dominant negative p53, which supports HIV-1 replication. This work clarifies the function and consequences of p53 modification by ISG15 and implicates USP18 in HIV-1 infection and potentially in carcinogenesis.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citocinas/metabolismo , Infecções por HIV/imunologia , HIV-1/imunologia , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitinas/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Citocinas/genética , Células Dendríticas/imunologia , Infecções por HIV/virologia , Humanos , Imunidade Inata , Macrófagos/imunologia , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Ubiquitina Tiolesterase/genética , Ubiquitinas/genética
20.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052182

RESUMO

Class I histone deacetylases (HDACs) generally promote cell proliferation and tumorigenesis, whereas class IIA HDACs like HDAC4 and HDAC5 may promote or impede cancer development in a tissue-dependent manner. In urothelial carcinoma (UC), HDAC5 is often downregulated. Accordingly, HDAC5 was weakly expressed in UC cell lines suggesting a possible tumor-suppressive function. We therefore characterized the effects of stable HDAC5 expression in four UC cell lines (RT112, VM-Cub-1, SW1710 and UM-UC-3) with different phenotypes reflecting the heterogeneity of UC, by assessing proliferation, clonogenicity and migration ability. Further, we detailed changes in the proteome and transcriptome by immunoblotting, mass spectrometry and RNA sequencing analysis. We observed that HDAC5 overexpression in general decreased cell proliferation, but in one cell line (VM-Cub-1) induced a dramatic change from an epitheloid to a mesenchymal phenotype, i.e., epithelial-mesenchymal transition (EMT). These phenotypical changes were confirmed by comprehensive proteomics and transcriptomics analyses. In contrast to HDAC5, overexpression of HDAC4 exerted only weak effects on cell proliferation and phenotypes. We conclude that overexpression of HDAC5 may generally decrease proliferation in UC, but, intriguingly, may induce EMT on its own in certain circumstances.


Assuntos
Carcinoma/metabolismo , Proliferação de Células , Transição Epitelial-Mesenquimal , Histona Desacetilases/genética , Neoplasias da Bexiga Urinária/metabolismo , Urotélio/patologia , Carcinoma/genética , Linhagem Celular Tumoral , Células HEK293 , Histona Desacetilases/metabolismo , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias da Bexiga Urinária/genética , Urotélio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...