Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 19: 934-948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33598107

RESUMO

A growing body of research has demonstrated that targeting intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) is feasible and represents a new trending strategy in drug discovery. However, the number of inhibitors targeting IDPs/IDPRs is increasing slowly due to limitations of the methods that can be used to accelerate the discovery process. We have applied structure-based methods to successfully develop the first peptidic inhibitor (HIPe - Histone Inhibitory Peptide) that targets histone H4 that are released from NETs (Neutrophil Extracellular Traps). HIPe binds stably to the disordered N-terminal tail of histone H4, thereby preventing histone H4-induced cell death. Recently, by utilisation of the same state-of-the-art approaches, we have developed a novel peptidic inhibitor (CHIP - Cyclical Histone H2A Interference Peptide) that binds to NET-resident histone H2A, which results in a blockade of monocyte adhesion and consequently reduction in atheroprogression. Here, we present comprehensive details on the computational methods utilised to design and develop HIPe and CHIP. We have exploited protein-protein complexes as starting structures for rational peptide design and then applied binding free energy methods to predict and prioritise binding strength of the designed peptides with histone H4 and H2A. By doing this way, we have modelled only around 20 peptides and from these were able to select 4-5 peptides, from a total of more than a trillion candidate peptides, for functional characterisation in different experiments. The developed computational protocols are generic and can be widely used to design and develop novel inhibitors for other disordered proteins.

2.
Circulation ; 143(3): 254-266, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33167684

RESUMO

BACKGROUND: Acute infection is a well-established risk factor of cardiovascular inflammation increasing the risk for a cardiovascular complication within the first weeks after infection. However, the nature of the processes underlying such aggravation remains unclear. Lipopolysaccharide derived from Gram-negative bacteria is a potent activator of circulating immune cells including neutrophils, which foster inflammation through discharge of neutrophil extracellular traps (NETs). Here, we use a model of endotoxinemia to link acute infection and subsequent neutrophil activation with acceleration of vascular inflammation Methods: Acute infection was mimicked by injection of a single dose of lipopolysaccharide into hypercholesterolemic mice. Atherosclerosis burden was studied by histomorphometric analysis of the aortic root. Arterial myeloid cell adhesion was quantified by intravital microscopy. RESULTS: Lipopolysaccharide treatment rapidly enhanced atherosclerotic lesion size by expansion of the lesional myeloid cell accumulation. Lipopolysaccharide treatment led to the deposition of NETs along the arterial lumen, and inhibition of NET release annulled lesion expansion during endotoxinemia, thus suggesting that NETs regulate myeloid cell recruitment. To study the mechanism of monocyte adhesion to NETs, we used in vitro adhesion assays and biophysical approaches. In these experiments, NET-resident histone H2a attracted monocytes in a receptor-independent, surface charge-dependent fashion. Therapeutic neutralization of histone H2a by antibodies or by in silico designed cyclic peptides enables us to reduce luminal monocyte adhesion and lesion expansion during endotoxinemia. CONCLUSIONS: Our study shows that NET-associated histone H2a mediates charge-dependent monocyte adhesion to NETs and accelerates atherosclerosis during endotoxinemia.


Assuntos
Aterosclerose/metabolismo , Adesão Celular/fisiologia , Endotoxemia/metabolismo , Monócitos/metabolismo , Eletricidade Estática , Animais , Aterosclerose/induzido quimicamente , Aterosclerose/patologia , Adesão Celular/efeitos dos fármacos , Endotoxemia/induzido quimicamente , Endotoxemia/patologia , Armadilhas Extracelulares/metabolismo , Humanos , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/efeitos dos fármacos , Monócitos/patologia
3.
Cells ; 8(12)2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783639

RESUMO

Equine recurrent uveitis (ERU) is considered one of the most important eye diseases in horses and typically appears with relapsing inflammatory episodes without systemic effects. Various disorders have been described as an initial trigger, including infections. Independent of the initiating cause, there are numerous indications that ERU is an immune-mediated disease. We investigated whether neutrophil extracellular traps (NETs) are part of the ERU pathogenesis. Therefore, vitreous body fluids (VBF), sera, and histological sections of the eye from ERU-diseased horses were analyzed for the presence of NET markers and compared with horses with healthy eyes. In addition, NET formation by blood derived neutrophils was investigated in the presence of VBF derived from horses with healthy eyes versus ERU-diseased horses using immunofluorescence microscopy. Interestingly, NET markers like free DNA, histone-complexes, and myeloperoxidase were detected in higher amounts in samples from ERU-diseased horses. Furthermore, in vitro NET formation was higher in neutrophils incubated with VBF from diseased horses compared with those animals with healthy eyes. Finally, we characterized the ability of equine cathelicidins to induce NETs, as potential NET inducing factors in ERU-diseased horses. In summary, our findings lead to the hypothesis that ERU-diseased horses develop more NETs and that these may contribute to the pathogenesis of ERU.


Assuntos
Doença Crônica/veterinária , Armadilhas Extracelulares/imunologia , Cavalos/imunologia , Uveíte , Corpo Vítreo/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Uveíte/imunologia , Uveíte/veterinária , Corpo Vítreo/patologia , Catelicidinas
4.
Nature ; 569(7755): 236-240, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043745

RESUMO

The perpetuation of inflammation is an important pathophysiological contributor to the global medical burden. Chronic inflammation is promoted by non-programmed cell death1,2; however, how inflammation is instigated, its cellular and molecular mediators, and its therapeutic value are poorly defined. Here we use mouse models of atherosclerosis-a major underlying cause of mortality worldwide-to demonstrate that extracellular histone H4-mediated membrane lysis of smooth muscle cells (SMCs) triggers arterial tissue damage and inflammation. We show that activated lesional SMCs attract neutrophils, triggering the ejection of neutrophil extracellular traps that contain nuclear proteins. Among them, histone H4 binds to and lyses SMCs, leading to the destabilization of plaques; conversely, the neutralization of histone H4 prevents cell death of SMCs and stabilizes atherosclerotic lesions. Our data identify a form of cell death found at the core of chronic vascular disease that is instigated by leukocytes and can be targeted therapeutically.


Assuntos
Aterosclerose/patologia , Morte Celular , Membrana Celular/metabolismo , Histonas/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Porosidade , Animais , Artérias/patologia , Membrana Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Histonas/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/patologia , Neutrófilos/citologia , Ligação Proteica/efeitos dos fármacos
5.
Cell Metab ; 28(1): 175-182.e5, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29861387

RESUMO

Onset of cardiovascular complications as a consequence of atherosclerosis exhibits a circadian incidence with a peak in the morning hours. Although development of atherosclerosis extends for long periods of time through arterial leukocyte recruitment, we hypothesized that discrete diurnal invasion of the arterial wall could sustain atherogenic growth. Here, we show that myeloid cell recruitment to atherosclerotic lesions oscillates with a peak during the transition from the activity to the resting phase. This diurnal phenotype is regulated by rhythmic release of myeloid cell-derived CCL2, and blockade of its signaling abolished oscillatory leukocyte adhesion. In contrast, we show that myeloid cell adhesion to microvascular beds peaks during the early activity phase. Consequently, timed pharmacological CCR2 neutralization during the activity phase caused inhibition of atherosclerosis without disturbing microvascular recruitment. These findings demonstrate that chronic inflammation of large vessels feeds on rhythmic myeloid cell recruitment, and lay the foundation for chrono-pharmacology-based therapy.


Assuntos
Aterosclerose/terapia , Adesão Celular , Quimiocina CCL2/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Mieloides/metabolismo , Receptores CCR2/metabolismo , Animais , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
6.
J Innate Immun ; 10(5-6): 479-486, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29669334

RESUMO

Atherosclerosis is a chronic inflammation of the arterial vessel wall that arises from an imbalanced lipid metabolism. A growing body of literature describes leukocyte recruitment as a critical step in the initiation and progression of lesion development. By contrast, the role of leukocytes during plaque regression has been described in less detail. Leukocyte egress might be an important step to resolving chronic inflammation and therefore it may be a promising target for limiting advanced lesion development. This review aims to summarize our current knowledge of leukocyte recruitment to the arterial vessel wall. We will discuss mechanisms of leukocyte egress from the lesion site, as well as potential therapeutic strategies to promote atherosclerotic regression.


Assuntos
Artérias/imunologia , Aterosclerose/imunologia , Inflamação/imunologia , Leucócitos/imunologia , Células Mieloides/imunologia , Placa Aterosclerótica/imunologia , Animais , Movimento Celular , Humanos , Metabolismo dos Lipídeos
7.
Microb Biotechnol ; 10(3): 657-665, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28168836

RESUMO

Species tropism constitutes a serious problem for developing relevant animal models of infection. Human pathogens can express virulence factors that show specific selectivity to human proteins, while their affinity for orthologs from other species can vary significantly. Suitable animal species must be used to analyse whether virulence factors are potential targets for drug development. We developed an assay that rapidly predicts applicable animal species for studying virulence factors binding plasma proteins. We used two well-characterized Staphylococcus aureus proteins, SSL7 and Efb, to develop an ELISA-based inhibition assay using plasma from different animal species. The interaction between SSL7 and human C5 and the binding of Efb to human fibrinogen and human C3 was studied. Affinity experiments and Western blot analyses were used to validate the assay. Human, monkey and cat plasma interfered with binding of SSL7 to human C5. Binding of Efb to human fibrinogen was blocked in human, monkey, gerbil and pig plasma, while human, monkey, gerbil, rabbit, cat and guinea pig plasma inhibited the binding of Efb to human C3. These results emphasize the importance of choosing correct animal models, and thus, our approach is a rapid and cost-effective method that can be used to prevent unnecessary animal experiments.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Sanguíneas/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Animais , Ligantes , Ligação Proteica , Staphylococcus aureus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...