Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Genome Biol Evol ; 15(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935112

RESUMO

To elucidate the population history of the Caucasus, we conducted a survey of genetic diversity in Samegrelo (Mingrelia), western Georgia. We collected DNA samples and genealogical information from 485 individuals residing in 30 different locations, the vast majority of whom being Mingrelian speaking. From these DNA samples, we generated mitochondrial DNA (mtDNA) control region sequences for all 485 participants (female and male), Y-short tandem repeat haplotypes for the 372 male participants, and analyzed all samples at nearly 590,000 autosomal single nucleotide polymorphisms (SNPs) plus around 33,000 on the sex chromosomes, with 27,000 SNP removed for missingness, using the GenoChip 2.0+ microarray. The resulting data were compared with those from populations from Anatolia, the Caucasus, the Near East, and Europe. Overall, Mingrelians exhibited considerable mtDNA haplogroup diversity, having high frequencies of common West Eurasian haplogroups (H, HV, I, J, K, N1, R1, R2, T, U, and W. X2) and low frequencies of East Eurasian haplogroups (A, C, D, F, and G). From a Y-chromosome standpoint, Mingrelians possessed a variety of haplogroups, including E1b1b, G2a, I2, J1, J2, L, Q, R1a, and R1b. Analysis of autosomal SNP data further revealed that Mingrelians are genetically homogeneous and cluster with other modern-day South Caucasus populations. When compared with ancient DNA samples from Bronze Age archaeological contexts in the broader region, these data indicate that the Mingrelian gene pool began taking its current form at least by this period, probably in conjunction with the formation of a distinct linguistic community.


Assuntos
Cromossomos Humanos Y , Genética Populacional , Humanos , Masculino , Feminino , República da Geórgia , Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Europa (Continente) , Haplótipos , Variação Genética
2.
Virology ; 585: 100-108, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37327595

RESUMO

BACKGROUND: JC polyomavirus (JCV) has an ethno-geographical distribution across human populations. OBJECTIVE: Study the origins of the population of Misiones (Argentina) by using JCV as genetic marker. METHODS: Viral detection and characterization was conducted by PCR amplification and evolutionary analysis of the intergenic region sequences. RESULTS: 22 out of 121 samples were positive for JCV, including 5 viral lineages: MY (n = 8), Eu-a (n = 7), B1-c (n = 4), B1-b (n = 2) and Af2 (n = 1). MY sequences clustered within a branch of Native American origin that diverged from its Asian counterpart about 21,914 years ago (HPD 95% interval 15,383-30,177), followed by a sustained demographic expansion around 5000 years ago. CONCLUSIONS: JCV in Misiones reflects the multiethnic origin of the current population, with an important Amerindian contribution. Analysis of the MY viral lineage shows a pattern consistent with the arrival of early human migrations to the Americas and a population expansion by the pre-Columbian native societies.


Assuntos
Vírus JC , Humanos , Vírus JC/genética , Evolução Biológica , Dinâmica Populacional , Migração Humana , América/epidemiologia , DNA Viral/genética
3.
Curr Biol ; 33(11): 2350-2358.e7, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37207647

RESUMO

The 17th-century colonization of North America brought thousands of Europeans to Indigenous lands in the Delaware region, which comprises the eastern boundary of the Chesapeake Bay in what is now the Mid-Atlantic region of the United States.1 The demographic features of these initial colonial migrations are not uniformly characterized, with Europeans and European-Americans migrating to the Delaware area from other countries and neighboring colonies as single persons or in family units of free persons, indentured servants, or tenant farmers.2 European colonizers also instituted a system of racialized slavery through which they forcibly transported thousands of Africans to the Chesapeake region. Historical information about African-descended individuals in the Delaware region is limited, with a population estimate of less than 500 persons by 1700 CE.3,4 To shed light on the population histories of this period, we analyzed low-coverage genomes of 11 individuals from the Avery's Rest archaeological site (circa 1675-1725 CE), located in Delaware. Previous osteological and mitochondrial DNA (mtDNA) sequence analyses showed a southern group of eight individuals of European maternal descent, buried 15-20 feet from a northern group of three individuals of African maternal descent.5 Autosomal results further illuminate genomic similarities to Northwestern European reference populations or West and West-Central African reference populations, respectively. We also identify three generations of maternal kin of European ancestry and a paternal parent-offspring relationship between an adult and child of African ancestry. These findings expand our understanding of the origins and familial relationships in late 17th and early 18th century North America.


Assuntos
População Negra , Migração Humana , Adulto , Criança , Humanos , População Negra/genética , Delaware , DNA Mitocondrial/genética , Genética Populacional , Haplótipos , Brancos
4.
Integr Comp Biol ; 63(4): 907-921, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37061788

RESUMO

Among extant great apes, orangutans are considered the most sexually dimorphic in body size. However, the expression of sexual dimorphism in orangutans is more complex than simply males being larger than females. At sexual maturity, some male orangutans develop cheek pads (flanges), while other males remain unflanged even after becoming reproductively capable. Sometimes flange development is delayed in otherwise sexually mature males for a few years. In other cases, flange development is delayed for many years or decades, with some males even spending their entire lifespan as unflanged adults. Thus, unflanged males of various chronological ages can be mistakenly identified as "subadults." Unflanged adult males are typically described as "female-sized," but this may simply reflect the fact that unflanged male body size has only ever been measured in peri-pubescent individuals. In this study, we measured the skeletons of 111 wild adult orangutans (Pongo spp.), including 20 unflanged males, 45 flanged males, and 46 females, resulting in the largest skeletal sample of unflanged males yet studied. We assessed long bone lengths (as a proxy for stature) for all 111 individuals and recorded weights-at-death, femoral head diameters, bi-iliac breadths, and long bone cross-sectional areas (CSA) (as proxies for mass) for 27 of these individuals, including seven flanged males, three adult confirmed-unflanged males, and three young adult likely-unflanged males. ANOVA and Kruskal-Wallis tests with Tukey and Dunn post-hoc pairwise comparisons, respectively, showed that body sizes for young adult unflanged males are similar to those of the adult females in the sample (all P ≥ 0.09 except bi-iliac breadth), whereas body sizes for adult unflanged males ranged between those of adult flanged males and adult females for several measurements (all P < 0.001). Thus, sexually mature male orangutans exhibit body sizes that range from the female end of the spectrum to the flanged male end of the spectrum. These results exemplify that the term "sexual dimorphism" fails to capture the full range of variation in adult orangutan body size. By including adult unflanged males in analyses of body size and other aspects of morphology, not as aberrations but as an expected part of orangutan variation, we may begin to shift the way that we think about features typically considered dichotomous according to biological sex.

5.
Am J Biol Anthropol ; 180(2): 298-315, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36790764

RESUMO

BACKGROUND: Mitochondrial DNA haplogroup J is the third most frequent haplogroup in modern-day Scandinavia, although it did not originate there. To infer the genetic history of haplogroup J in Scandinavia, we examined worldwide mitogenome sequences using a maximum-likelihood phylogenetic approach. METHODS: Haplogroup J mitogenome sequences were gathered from GenBank (n = 2245) and aligned against the ancestral Reconstructed Sapiens Reference Sequence. We also analyzed haplogroup J Viking Age sequences from the European Nucleotide Archive (n = 54). Genetic distances were estimated from these data and projected onto a maximum likelihood rooted phylogenetic tree to analyze clustering and branching dates. RESULTS: Haplogroup J originated approximately 42.6 kya (95% CI: 30.0-64.7), with several of its earliest branches being found within the Arabian Peninsula and Northern Africa. J1b was found most frequently in the Near East and Arabian Peninsula, while J1c occurred most frequently in Europe. Based on phylogenetic dating, subhaplogroup J1c has its early roots in the Mediterranean and Western Balkans. Otherwise, the majority of the branches found in Scandinavia are younger than those seen elsewhere, indicating that haplogroup J dispersed relatively recently into Northern Europe, most plausibly with Neolithic farmers. CONCLUSIONS: Haplogroup J appeared when Scandinavia was transitioning to agriculture over 6 kya, with J1c being the most common lineage there today. Changes in the distribution of haplogroup J mtDNAs were likely driven by the expansion of farming from West Asia into Southern Europe, followed by a later expansion into Scandinavia, with other J subhaplogroups appearing among Scandinavian groups as early as the Viking Age.


Assuntos
Filogenia , Haplótipos/genética , Filogeografia , Países Escandinavos e Nórdicos , Península Balcânica
6.
Proc Natl Acad Sci U S A ; 120(3): e2201620120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36623185

RESUMO

In this study, we present the results of community-engaged ancient DNA research initiated after the remains of 36 African-descended individuals dating to the late 18th century were unearthed in the port city of Charleston, South Carolina. The Gullah Society of Charleston, along with other Charleston community members, initiated a collaborative genomic study of these ancestors of presumed enslaved status, in an effort to visibilize their histories. We generated 18 low-coverage genomes and 31 uniparental haplotypes to assess their genetic origins and interrelatedness. Our results indicate that they have predominantly West and West-Central African genomic ancestry, with one individual exhibiting some genomic affiliation with populations in the Americas. Most were assessed as genetic males, and no autosomal kin were identified among them. Overall, this study expands our understanding of the colonial histories of African descendant populations in the US South.


Assuntos
População Negra , DNA Antigo , Humanos , Masculino , População Negra/genética , DNA Mitocondrial/genética , Genômica , Haplótipos/genética , South Carolina/etnologia
7.
PLoS One ; 17(11): e0277771, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36445929

RESUMO

As a historical nomadic group in Central Asia, Kazaks have mainly inhabited the steppe zone from the Altay Mountains in the East to the Caspian Sea in the West. Fine scale characterization of the genetic profile and population structure of Kazaks would be invaluable for understanding their population history and modeling prehistoric human expansions across the Eurasian steppes. With this mind, we characterized the maternal lineages of 200 Kazaks from Jetisuu at mitochondrial genome level. Our results reveal that Jetisuu Kazaks have unique mtDNA haplotypes including those belonging to the basal branches of both West Eurasian (R0, H, HV) and East Eurasian (A, B, C, D) lineages. The great diversity observed in their maternal lineages may reflect pivotal geographic location of Kazaks in Eurasia and implies a complex history for this population. Comparative analyses of mitochondrial genomes of human populations in Central Eurasia reveal a common maternal genetic ancestry for Turko-Mongolian speakers and their expansion being responsible for the presence of East Eurasian maternal lineages in Central Eurasia. Our analyses further indicate maternal genetic affinity between the Sherpas from the Tibetan Plateau with the Turko-Mongolian speakers.


Assuntos
Genoma Mitocondrial , Humanos , Animais , Resolução de Problemas , Etnicidade , DNA Mitocondrial/genética , Gerbillinae , China
8.
Mitochondrion ; 67: 6-14, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115539

RESUMO

Based on current studies, the incidence of Ewing sarcoma (ES) varies significantly by race and ethnicity, with the disease being most common in patients of European ancestry. However, race/ethnicity has generally been self-reported rather than formally evaluated at a population level using DNA evidence. Additionally, mitochondrial dysfunction is a hallmark of ES, yet there have been no reported studies of mitochondrial genetics in ES. Thus, we evaluated both the mitochondrial and nuclear ancestries of 420 pediatric ES patients in the United States using whole-genome sequencing. We found that the mitochondrial DNA (mtDNA) genomes of only six (1.4 %) patients belonged to African L haplogroups, while those of 90 % of the patients belonged to macrohaplogroup R, which includes haplogroup H, the most common maternal lineage in Europe. Compared to the general US population, European haplogroups were significantly enriched in ES patients (p < 2.2e-16) and the African haplogroups are significantly impoverished (p < 4.6e-16). Using the ancestry informative markers defined in a National Genographic study, the vast majority of patients exhibited significant nuclear ancestry originating from the Mediterranean, Northern Europe, and Southwest Asia, including all six patients with African L mtDNAs. Very few had primarily African nuclear ancestry. This is the first genomic epidemiology study to simultaneously interrogate the mitochondrial and nuclear ancestries of ES patients. While supporting previous findings of enriched European ancestry in ES patients, these results also suggest alternative hypotheses for the significant contribution of mitochondrial ancestry in ES patients, as well as the protective role of African ancestry.


Assuntos
DNA Mitocondrial , Sarcoma de Ewing , Humanos , Criança , DNA Mitocondrial/genética , Haplótipos , Sarcoma de Ewing/genética , População Negra , Mitocôndrias/genética
10.
Science ; 377(6601): 72-79, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35771911

RESUMO

Micronesia began to be peopled earlier than other parts of Remote Oceania, but the origins of its inhabitants remain unclear. We generated genome-wide data from 164 ancient and 112 modern individuals. Analysis reveals five migratory streams into Micronesia. Three are East Asian related, one is Polynesian, and a fifth is a Papuan source related to mainland New Guineans that is different from the New Britain-related Papuan source for southwest Pacific populations but is similarly derived from male migrants ~2500 to 2000 years ago. People of the Mariana Archipelago may derive all of their precolonial ancestry from East Asian sources, making them the only Remote Oceanians without Papuan ancestry. Female-inherited mitochondrial DNA was highly differentiated across early Remote Oceanian communities but homogeneous within, implying matrilocal practices whereby women almost never raised their children in communities different from the ones in which they grew up.


Assuntos
DNA Antigo , DNA Mitocondrial , Migração Humana , Povo Asiático/genética , Criança , DNA Mitocondrial/genética , Feminino , História Antiga , Migração Humana/história , Humanos , Masculino , Micronésia , Oceania
11.
BMC Genomics ; 23(1): 354, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525961

RESUMO

BACKGROUND: We combined an unsupervised learning methodology for analyzing mitogenome sequences with maximum likelihood (ML) phylogenetics to make detailed inferences about the evolution and diversification of mitochondrial DNA (mtDNA) haplogroup U5, which appears at high frequencies in northern Europe. METHODS: Haplogroup U5 mitogenome sequences were gathered from GenBank. The hierarchal Bayesian Analysis of Population Structure (hierBAPS) method was used to generate groups of sequences that were then projected onto a rooted maximum likelihood (ML) phylogenetic tree to visualize the pattern of clustering. The haplogroup statuses of the individual sequences were assessed using Haplogrep2. RESULTS: A total of 23 hierBAPS groups were identified, all of which corresponded to subclades defined in Phylotree, v.17. The hierBAPS groups projected onto the ML phylogeny accurately clustered all haplotypes belonging to a specific haplogroup in accordance with Haplogrep2. By incorporating the geographic source of each sequence and subclade age estimates into this framework, inferences about the diversification of U5 mtDNAs were made. Haplogroup U5 has been present in northern Europe since the Mesolithic, and spread in both eastern and western directions, undergoing significant diversification within Scandinavia. A review of historical and archeological evidence attests to some of the population interactions contributing to this pattern. CONCLUSIONS: The hierBAPS algorithm accurately grouped mitogenome sequences into subclades in a phylogenetically robust manner. This analysis provided new insights into the phylogeographic structure of haplogroup U5 diversity in northern Europe, revealing a detailed perspective on the diversity of subclades in this region and their distribution in Scandinavian populations.


Assuntos
DNA Mitocondrial , Genética Populacional , Aprendizado de Máquina não Supervisionado , Teorema de Bayes , DNA Mitocondrial/genética , Europa (Continente) , Evolução Molecular , Haplótipos , Humanos , Filogenia , Filogeografia
12.
Sci Rep ; 12(1): 1027, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046511

RESUMO

Northwest Pakistan has served as a point of entry to South Asia for different populations since ancient times. However, relatively little is known about the population genetic history of the people residing within this region. To better understand human dispersal in the region within the broader history of the subcontinent, we analyzed mtDNA diversity in 659 and Y-chromosome diversity in 678 individuals, respectively, from five ethnic groups (Gujars, Jadoons, Syeds, Tanolis and Yousafzais), from Swabi and Buner Districts, Khyber Pakhtunkhwa Province, Pakistan. The mtDNAs of all individuals were subject to control region sequencing and SNP genotyping, while Y-chromosomes were analyzed using 54 SNPs and 19 STR loci. The majority of the mtDNAs belonged to West Eurasian haplogroups, with the rest belonging to either South or East Asian lineages. Four of the five Pakistani populations (Gujars, Jadoons, Syeds, Yousafzais) possessed strong maternal genetic affinities with other Pakistani and Central Asian populations, whereas one (Tanolis) did not. Four haplogroups (R1a, R1b, O3, L) among the 11 Y-chromosome lineages observed among these five ethnic groups contributed substantially to their paternal genetic makeup. Gujars, Syeds and Yousafzais showed strong paternal genetic affinities with other Pakistani and Central Asian populations, whereas Jadoons and Tanolis had close affinities with Turkmen populations from Central Asia and ethnic groups from northeast India. We evaluate these genetic data in the context of historical and archeological evidence to test different hypotheses concerning their origins and biological relationships.


Assuntos
Etnicidade/genética , Genética Populacional , Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Haplótipos , Humanos , Masculino , Paquistão/etnologia , Filogenia , Polimorfismo de Nucleotídeo Único
13.
J Med Virol ; 94(2): 745-751, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34569642

RESUMO

The province of Misiones is considered a region with a high mortality rate due to cervical cancer (CC). To gain insight into this problem, we explored the association between genetic variation in the E6 and E7 oncogenes of HPV16 and the risk of CC. We studied 160 women with cytological diagnoses of negative for intraepithelial lesion or malignity, low-grade squamous intraepithelial lesion, and high-grade squamous intraepithelial lesion/CC and a positive test for HPV16 infection. The genetic characterization of E6 and E7 genes was undertaken through PCR amplification and direct Sanger sequencing. Phylogenetic classification was conducted using Bayesian methods. To estimate the odds ratio (OR) for an association between genetic variants in the E6 and E7 genes and the risk of CC, we used ordinal logistic regression adjusted by age. The final data set comprised 112 samples. Diagnostic single-nucleotide polymorphisms (SNPs) and phylogenetic trees confirmed the presence of Lineage A (95.5%) and D (4.5%) in the samples. For the E6 gene, we identified eleven different sequences, with the most common ones being Lineage A E6 350G (58.9%) and E6 350T (37.5%). The E6 350G was associated with progression to HSIL/CC, with an OR of 19.41 (4.95-76.10). The E7 gene was more conserved than E6, probably due to the functional constraints of this small protein. Our results confirmed the association of the E6 350G SNP with a higher risk of developing CC. These data will contribute to understanding the biological bases of CC incidence in this region.


Assuntos
Papillomavirus Humano 16/genética , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/virologia , Neoplasias do Colo do Útero/virologia , Adolescente , Adulto , Argentina , Teorema de Bayes , Bases de Dados Factuais , Feminino , Variação Genética , Papillomavirus Humano 16/patogenicidade , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Filogenia , Estudos Retrospectivos , Lesões Intraepiteliais Escamosas/virologia , Adulto Jovem
14.
Am J Hum Biol ; 34(2): e23629, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34146380

RESUMO

OBJECTIVES: Mitochondria are critical for the survival of eukaryotic organisms due to their ability to produce cellular energy, which drives virtually all aspects of host biology. However, the effects of mitochondrial DNA (mtDNA) variation in relation to disease etiology and adaptation within contemporary global human populations remains incompletely understood. METHODS: To develop a more holistic understanding of the role of mtDNA diversity in human adaptation, health, and disease, we investigated mitochondrial biology and bioenergetics. More specifically, we synthesized details from studies of mitochondrial function and variation in the context of haplogroup background, climatic adaptation, and oxidative disease. RESULTS: The majority of studies show that mtDNA variation arose during modern human dispersal around the world. Some of these variants appear to have been positively selected for their adaptiveness in colder climates, with these sequence changes having implications for tissue-specific function and thermogenic capacity. In addition, many variants modulating energy production are also associated with damaging metabolic byproducts and mitochondrial dysfunction, which, in turn, are implicated in the onset and severity of several different adult mitochondrial diseases. Thus, mtDNA variation that governs bioenergetics, metabolism, and thermoregulation may potentially have adverse consequences for human health, depending on the genetic background and context in which it occurs. CONCLUSIONS: Our review suggests that the mitochondrial research field would benefit from independently replicating mtDNA haplogroup-phenotype associations across global populations, incorporating potentially confounding environmental, demographic, and disease covariates into studies of mtDNA variation, and extending association-based studies to include analyses of complete mitogenomes and assays of mitochondrial function.


Assuntos
Adaptação Fisiológica , DNA Mitocondrial , DNA Mitocondrial/genética , Metabolismo Energético/genética , Variação Genética , Haplótipos , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo
15.
Am J Phys Anthropol ; 176(1): 120-133, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34110627

RESUMO

BACKGROUND: While well known for its Viking past, Norway's population history and the influences that have shaped its genetic diversity are less well understood. This is particularly true with respect to its demography, migration patterns, and dialectal regions, despite there being curated historical records for the past several centuries. In this study, we undertook an analysis of mitochondrial DNA (mtDNA) diversity within the country to elaborate this history from a matrilineal genetic perspective. METHODS: We aggregated 1174 partial modern Norwegian mtDNA sequences from the published literature and subjected them to detailed statistical and phylogenetic analysis by dialectal regions and localities. We further contextualized the matrilineal ancestry of modern Norwegians with data from Mesolithic, Iron Age, and historic period populations. RESULTS: Modern Norwegian mtDNAs fell into eight West Eurasian (N, HV, JT, I, U, K, X, W), five East Eurasian (A, F, G, N11, Z), and one African (L2) haplogroups. Pairwise analysis of molecular variance (AMOVA) estimates for all Norwegians indicated they were differentiated from each other at 1.68% (p < 0.001). Norwegians within the same dialectal region also showed genetic similarities to each other, although differences between subpopulations within dialectal regions were also observed. In addition, certain mtDNA lineages in modern Norwegians were also found among prehistoric and historic period populations, suggesting some level of genetic continuity over hundreds to many thousands of years. CONCLUSIONS: This analysis of mtDNA diversity provides a detailed picture of the genetic variation within Norway in light of its topography, settlement history, and historical migrations over the past several centuries.


Assuntos
DNA Mitocondrial , Variação Genética/genética , População Branca , Antropologia Física , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , Genética Populacional , Haplótipos/genética , Humanos , Noruega , Filogenia , População Branca/classificação , População Branca/genética
16.
iScience ; 24(5): 102487, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34036249

RESUMO

Native Mexican populations are crucial for understanding the genetic ancestry of Aztec descendants and coexisting ethnolinguistic groups in the Valley of Mexico and elucidating the population dynamics of the prehistoric colonization of the Americas. Mesoamerican societies were multicultural in nature and also experienced significant admixture during Spanish colonization of the region. Despite these facts, Native Mexican Y chromosome diversity has been greatly understudied. To further elucidate their genetic history, we conducted a high-resolution Y chromosome analysis with Chichimecas, Nahuas, Otomies, Popolocas, Tepehuas, and Totonacas using 19 Y-short tandem repeat and 21 single nucleotide polymorphism loci. We detected enormous paternal genetic diversity in these groups, with haplogroups Q-MEH2, Q-M3, Q-Z768, Q-L663, Q-Z780, and Q-PV3 being identified. These data affirmed the southward colonization of the Americas via Beringia and connected Native Mexicans with indigenous populations from South-Central Siberia and Canada. They also suggested that multiple population dispersals gave rise to Y chromosome diversity in these populations.

17.
Am J Phys Anthropol ; 175(4): 905-919, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34008864

RESUMO

OBJECTIVES: Gullah African Americans are descendants of formerly enslaved Africans living in the Sea Islands along the coast of the southeastern U.S., from North Carolina to Florida. Their relatively high numbers and geographic isolation were conducive to the development and preservation of a unique culture that retains deep African features. Although historical evidence supports a West-Central African ancestry for the Gullah, linguistic and cultural evidence of a connection to Sierra Leone has led to the suggestion of this country/region as their ancestral home. This study sought to elucidate the genetic structure and ancestry of the Gullah. MATERIALS AND METHODS: We leveraged whole-genome genotype data from Gullah, African Americans from Jackson, Mississippi, African populations from Sierra Leone, and population reference panels from Africa and Europe to infer population structure, ancestry proportions, and global estimates of admixture. RESULTS: Relative to non-Gullah African Americans from the Southeast US, the Gullah exhibited higher mean African ancestry, lower European admixture, a similarly small Native American contribution, and increased male-biased European admixture. A slightly tighter bottleneck in the Gullah 13 generations ago suggests a largely shared demographic history with non-Gullah African Americans. Despite a slightly higher relatedness to populations from Sierra Leone, our data demonstrate that the Gullah are genetically related to many West African populations. DISCUSSION: This study confirms that subtle differences in African American population structure exist at finer regional levels. Such observations can help to inform medical genetics research in African Americans, and guide the interpretation of genetic data used by African Americans seeking to explore ancestral identities.


Assuntos
População Negra , Negro ou Afro-Americano , África , Negro ou Afro-Americano/genética , População Negra/genética , Europa (Continente) , Genótipo , Humanos , Masculino
18.
Am J Phys Anthropol ; 175(1): 3-24, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33022107

RESUMO

OBJECTIVES: In 2013, the burials of 36 individuals of putative African ancestry were discovered during renovation of the Gaillard Center in downtown Charleston, South Carolina. The Charleston community facilitated a bioarchaeological and mitogenomic study to gain insights into the lives of these unknown persons, referred to as the Anson Street Ancestors, including their ancestry, health, and lived experiences in the 18th century. METHODS: Metric and morphological assessments of skeletal and dental characteristics were recorded, and enamel and cortical bone strontium stable isotope values generated. Whole mitochondrial genomes were sequenced and analyzed. RESULTS: Osteological analysis identified adults, both females and males, and subadults at the site, and estimated African ancestry for most individuals. Skeletal trauma and pathology were infrequent, but many individuals exhibited dental decay and abscesses. Strontium isotope data suggested these individuals mostly originated in Charleston or sub-Saharan Africa, with many being long-term residents of Charleston. Nearly all had mitochondrial lineages belonging to African haplogroups (L0-L3, H1cb1a), with two individuals sharing the same L3e2a haplotype, while one had a Native American A2 mtDNA. DISCUSSION: This study generated detailed osteobiographies of the Anson Street Ancestors, who were likely of enslaved status. Our results indicate that the Ancestors have diverse maternal African ancestries and are largely unrelated, with most being born locally. These details reveal the demographic impact of the trans-Atlantic slave trade. Our analysis further illuminates the lived experiences of individuals buried at Anson Street, and expands our understanding of 18th century African history in Charleston.


Assuntos
Pessoas Escravizadas/história , Escravização/etnologia , Escravização/história , Adolescente , Adulto , Antropologia Física , Osso e Ossos/química , Sepultamento/história , Criança , Pré-Escolar , Pessoas Escravizadas/estatística & dados numéricos , Família/etnologia , Família/história , Feminino , Genoma Mitocondrial/genética , Nível de Saúde , História do Século XVIII , Humanos , Lactente , Recém-Nascido , Masculino , South Carolina/etnologia , Isótopos de Estrôncio/análise , Dente/química , Dente/patologia , Adulto Jovem
20.
Genetica ; 148(3-4): 195-206, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32607672

RESUMO

The strategic location of Pakistan and its presence at the crossroads of Asia has resulted in it playing a central role in both prehistoric and historic human migratory events, thereby linking and facilitating contacts between the inhabitants of the Middle East, Central Asia, China and South Asia. Despite the importance of this region and its inhabitants for our understanding of modern human origins and population dispersals, the nature of mitochondrial DNA (mtDNA) variation among members of the myriad populations of this area has largely been unexplored. Here, we report mtDNA control region sequences in 58 individuals from the Khattak and the Kheshgi, two major Pakhtun tribes residing within the Peshawar Valley of northwestern Pakistan. The results reveal that these ethnic groups are genetically heterogeneous, having 55.7% West Eurasian, 33.9% South Asian and 10.2% East Asian haplogroups. The genetic diversity observed for the Kheshgi was somewhat higher than that of the Khattak. A multidimensional scaling plot based on haplogroup frequencies for the Khattak, Kheshgi and neighboring populations indicates that the Khattak have close affinities with Baluch, Uzbek and Kazak populations but are only distantly related to the Kheshgi and other Pakistani populations. By contrast, the Kheshgi cluster closely with other Pakhtun or Pathan populations of Pakistan, suggesting a possible common maternal gene pool shared amongst them. These mtDNA data allow us to begin reconstructing the origins of the Khattak and Kheshgi and describe their complex interactions with populations from the surrounding regions.


Assuntos
DNA Mitocondrial/genética , Etnicidade/genética , Polimorfismo Genético , Humanos , Paquistão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...