Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 182(1): 424-435, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31636102

RESUMO

Acclimation to changing light intensities poses major challenges to plant metabolism and has been shown to involve regulatory adjustments in chloroplast gene expression. However, this regulation has not been examined at a plastid genome-wide level and for many genes, it is unknown whether their expression responds to altered light intensities. Here, we applied comparative ribosome profiling and transcriptomic experiments to analyze changes in chloroplast transcript accumulation and translation in leaves of tobacco (Nicotiana tabacum) seedlings after transfer from moderate light to physiological high light. Our time-course data revealed almost unaltered chloroplast transcript levels and only mild changes in ribosome occupancy during 2 d of high light exposure. Ribosome occupancy on the psbA mRNA (encoding the D1 reaction center protein of PSII) increased and that on the petG transcript decreased slightly after high light treatment. Transfer from moderate light to high light did not induce substantial alterations in ribosome pausing. Transfer experiments from low light to high light conditions resulted in strong PSII photoinhibition and revealed the distinct light-induced activation of psbA translation, which was further confirmed by reciprocal shift experiments. In low-light-to-high-light shift experiments, as well as reciprocal treatments, the expression of all other chloroplast genes remained virtually unaltered. Altogether, our data suggest that low light-acclimated plants upregulate the translation of a single chloroplast gene, psbA, during acclimation to high light. Our results indicate that psbA translation activation occurs already at moderate light intensities. Possible reasons for the otherwise mild effects of light intensity changes on gene expression in differentiated chloroplasts are discussed.


Assuntos
Cloroplastos/metabolismo , Luz , Nicotiana/metabolismo , Cloroplastos/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Ribossomos/efeitos da radiação , Nicotiana/efeitos da radiação
2.
Nat Plants ; 5(5): 525-538, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31061535

RESUMO

Communication between organelles and the nucleus is essential for fitness and survival. Retrograde signals are cues emitted from the organelles to regulate nuclear gene expression. GENOMES UNCOUPLED1 (GUN1), a protein of unknown function, has emerged as a central integrator, participating in multiple retrograde signalling pathways that collectively regulate the nuclear transcriptome. Here, we show that GUN1 regulates chloroplast protein import through interaction with the import-related chaperone cpHSC70-1. We demonstrated that overaccumulation of unimported precursor proteins (preproteins) in the cytosol causes a GUN phenotype in the wild-type background and enhances the GUN phenotype of the gun1 mutant. Furthermore, we identified the cytosolic HSP90 chaperone complex, induced by overaccumulated preproteins, as a central regulator of photosynthetic gene expression that determines the expression of the GUN phenotype. Taken together, our results suggest a model in which protein import capacity, folding stress and the cytosolic HSP90 complex control retrograde communication.


Assuntos
Proteínas de Arabidopsis/fisiologia , Proteínas de Ligação a DNA/fisiologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Transdução de Sinais/fisiologia , Transcriptoma
3.
Nucleic Acids Res ; 43(12): 5687-98, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26026160

RESUMO

Key components of the translational apparatus, i.e. ribosomes, elongation factor EF-Tu and most aminoacyl-tRNA synthetases, are stereoselective and prevent incorporation of d-amino acids (d-aa) into polypeptides. The rare appearance of d-aa in natural polypeptides arises from post-translational modifications or non-ribosomal synthesis. We introduce an in vitro translation system that enables single incorporation of 17 out of 18 tested d-aa into a polypeptide; incorporation of two or three successive d-aa was also observed in several cases. The system consists of wild-type components and d-aa are introduced via artificially charged, unmodified tRNA(Gly) that was selected according to the rules of 'thermodynamic compensation'. The results reveal an unexpected plasticity of the ribosomal peptidyltransferase center and thus shed new light on the mechanism of chiral discrimination during translation. Furthermore, ribosomal incorporation of d-aa into polypeptides may greatly expand the armamentarium of in vitro translation towards the identification of peptides and proteins with new properties and functions.


Assuntos
Aminoácidos/química , Biossíntese Peptídica , Fator Tu de Elongação de Peptídeos/metabolismo , Ribossomos/metabolismo , Aminoácidos/metabolismo , Fator Tu de Elongação de Peptídeos/química , Peptídeos/química , RNA de Transferência/química , RNA de Transferência/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/química , Estereoisomerismo , Aminoacilação de RNA de Transferência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...