Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 13(9): 5876-5895, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37180964

RESUMO

Operando soft and hard X-ray spectroscopic techniques were used in combination with plane-wave density functional theory (DFT) simulations to rationalize the enhanced activities of Zn-containing Cu nanostructured electrocatalysts in the electrocatalytic CO2 hydrogenation reaction. We show that at a potential for CO2 hydrogenation, Zn is alloyed with Cu in the bulk of the nanoparticles with no metallic Zn segregated; at the interface, low reducible Cu(I)-O species are consumed. Additional spectroscopic features are observed, which are identified as various surface Cu(I) ligated species; these respond to the potential, revealing characteristic interfacial dynamics. Similar behavior was observed for the Fe-Cu system in its active state, confirming the general validity of this mechanism; however, the performance of this system deteriorates after successive applied cathodic potentials, as the hydrogen evolution reaction then becomes the main reaction pathway. In contrast to an active system, Cu(I)-O is now consumed at cathodic potentials and not reversibly reformed when the voltage is allowed to equilibrate at the open-circuit voltage; rather, only the oxidation to Cu(II) is observed. We show that the Cu-Zn system represents the optimal active ensembles with stabilized Cu(I)-O; DFT simulations rationalize this observation by indicating that Cu-Zn-O neighboring atoms are able to activate CO2, whereas Cu-Cu sites provide the supply of H atoms for the hydrogenation reaction. Our results demonstrate an electronic effect exerted by the heterometal, which depends on its intimate distribution within the Cu phase and confirms the general validity of these mechanistic insights for future electrocatalyst design strategies.

2.
J Microsc ; 288(3): 169-184, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35502816

RESUMO

We present a trainable segmentation method implemented within the python package ParticleSpy. The method takes user labelled pixels, which are used to train a classifier and segment images of inorganic nanoparticles from transmission electron microscope images. This implementation is based on the trainable Waikato Environment for Knowledge Analysis (WEKA) segmentation, but is written in python, allowing a large degree of flexibility and meaning it can be easily expanded using other python packages. We find that trainable segmentation offers better accuracy than global or local thresholding methods and requires as few as 100 user-labelled pixels to produce an accurate segmentation. Trainable segmentation presents a balance of accuracy and training time between global/local thresholding and neural networks, when used on transmission electron microscope images of nanoparticles. We also quantitatively investigate the effectiveness of the components of trainable segmentation, its filter kernels and classifiers, in order to demonstrate the use cases for the different filter kernels in ParticleSpy and the most accurate classifiers for different data types. A set of filter kernels is identified that are effective in distinguishing particles from background but that retain dissimilar features. In terms of classifiers, we find that different classifiers perform optimally for different image contrast; specifically, a random forest classifier performs best for high-contrast ADF images, but that QDA and Gaussian Naïve Bayes classifiers perform better for low-contrast TEM images.


Measurement of the size, shape and composition of nanoparticles is routinely performed using transmission electron microscopy and related techniques. Typically, distinguishing particles from the background in an image is performed using the intensity of each pixel, creating two sets of pixels to separate particles from background. However, this separation of intensity can be difficult if the contrast in an image is low, or if the intensity of the background varies significantly. In this study, an approach that takes into account additional image features (such as boundaries and texture) was investigated to study electron microscope images of metallic nanoparticles. In this 'trainable segmentation' approach, the user labels examples of particle and background pixels in order to train a machine learning algorithm to distinguish between particles and background. The performance of different machine learning algorithms was investigated, in addition to the effect of using different features to aid the segmentation. Overall, a trainable segmentation approach was found to perform better than use of an intensity threshold to distinguish between particles and background in electron microscope images.


Assuntos
Processamento de Imagem Assistida por Computador , Nanopartículas , Processamento de Imagem Assistida por Computador/métodos , Teorema de Bayes , Redes Neurais de Computação , Microscopia Eletrônica de Transmissão
3.
J Synchrotron Radiat ; 29(Pt 2): 431-438, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254306

RESUMO

To improve the understanding of catalysts, and ultimately the ability to design better materials, it is crucial to study them during their catalytic active states. Using in situ or operando conditions allows insights into structure-property relationships, which might not be observable by ex situ characterization. Spatially resolved X-ray fluorescence, X-ray diffraction and X-ray absorption near-edge spectroscopy are powerful tools to determine structural and electronic properties, and the spatial resolutions now achievable at hard X-ray nanoprobe beamlines make them an ideal complement to high-resolution transmission electron microscopy studies in a multi-length-scale analysis approach. The development of a system to enable the use of a commercially available gas-cell chip assembly within an X-ray nanoprobe beamline is reported here. The novel in situ capability is demonstrated by an investigation of the redox behaviour of supported Pt nanoparticles on ceria under typical lean and rich diesel-exhaust conditions; however, the system has broader application to a wide range of solid-gas reactions. In addition the setup allows complimentary in situ transmission electron microscopy and X-ray nanoprobe studies under identical conditions, with the major advantage compared with other systems that the exact same cell can be used and easily transferred between instruments. This offers the exciting possibility of studying the same particles under identical conditions (gas flow, pressure, temperature) using multiple techniques.

4.
Meat Sci ; 184: 108685, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34656005

RESUMO

Data on chemical body composition of cattle serve as a basis for recommendations on energy and nutrient requirements. Relevant data of growing dual-purpose Fleckvieh (German Simmental) bulls are scarce and originate from old trials, covering low rates of gain and live weights. Hence, the aim of the study was to analyze the body tissue distribution, chemical composition, and composition of body weight gain of growing Fleckvieh bulls within a 120-780 kg live weight range. Results showed that body composition changed during growth but was not affected by dietary energy concentration. Changes in body composition were characterized by increasing shares of fat tissue and ether extract. Body tissues as blood, organs, gastrointestinal tract, and bone proportionately decreased during growth, while muscle and tendon proportions remained constant. The bulls featured enhanced growth potential and high muscle and protein gain throughout the described weight range. The requirements for metabolizable protein in relation to energy decrease with increasing live weight of the animals.


Assuntos
Composição Corporal , Bovinos/crescimento & desenvolvimento , Dieta/veterinária , Tecido Adiposo , Ração Animal/análise , Animais , Masculino , Carne Vermelha , Aumento de Peso
5.
Viruses ; 13(9)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34578468

RESUMO

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has expanded into a global pandemic, with more than 220 million affected persons and almost 4.6 million deaths by 8 September 2021. In particular, Europe and the Americas have been heavily affected by high infection and death rates. In contrast, much lower infection rates and mortality have been reported generally in Africa, particularly in the sub-Saharan region (with the exception of the Southern Africa region). There are different hypotheses for this African paradox, including less testing, the young age of the population, genetic disposition, and behavioral and epidemiological factors. In the present review, we address different immunological factors and their correlation with genetic factors, pre-existing immune status, and differences in cytokine induction patterns. We also focus on epidemiological factors, such as specific medication coverage, helminth distribution, and malaria endemics in the sub-Saharan region. An analysis combining different factors is presented that highlights the central role of the NF-κB signaling pathway in the African paradox. Importantly, insights into the interplay of different factors with the underlying immune pathological mechanisms for COVID-19 can provide a better understanding of the disease and the development of new targets for more efficient treatment strategies.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Interações Hospedeiro-Patógeno , SARS-CoV-2/fisiologia , África/epidemiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Biomarcadores , COVID-19/imunologia , COVID-19/metabolismo , Comorbidade , Citocinas/metabolismo , Suscetibilidade a Doenças , Geografia Médica , Saúde Global , Humanos , Mortalidade , NF-kappa B/metabolismo , Vigilância da População , Transdução de Sinais
6.
J Phys Condens Matter ; 33(28)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949972

RESUMO

Platinum group metals such as palladium and rhodium based catalysts are currently being implemented in gasoline particulate filter (GPF) autoexhaust after treatment systems. However, little is known about how the trapped particulate matter, such as the incombustible ash, interacts with the catalyst and so may affect its performance. Thisoperandostudy follows the evolution of the Pd found in two different model GPF systems: one containing ash components extracted from a GPF and another from a catalyst washcoat prior to adhesion onto the GPF. We show that the catalytic activity of the two systems vary when compared with a 0 g ash containing GPF. Compared to the 0 g ash sample the 20 g ash containing sample had a higher CO light off temperature, in addition, an oscillation profile for CO, CO2and O2was observed, which is speculated to be a combination of CO oxidation, C deposition via a Boudouard reaction and further partial oxidation of the deposited species to CO. During the ageing procedure the washcoat sample reduces NO at a lower temperature than the 0 g ash sample. However, post ageing the 0 g ash sample recovers and both samples reduce NO at 310 °C. In comparison, the 20 g ash GPF sample maintains a higher NO reduction temperature of 410 °C post ageing, implying that the combination of high temperature ageing and presence of ash has an irreversible negative effect on catalyst performance.

7.
Phys Chem Chem Phys ; 22(34): 18788-18797, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32329490

RESUMO

Hydrotalcite-derived Ni and Fe-promoted hydrotalcite-derived Ni catalysts were found to outperform industrial catalysts in the CO2 methanation reaction, however the origin of the improved activity and selectivity of these catalysts is not clear. Here, we report a study of these systems by means of in situ X-ray photoelectron spectroscopy and near-edge X-ray absorption spectroscopy elucidating the chemical nature of the catalysts surface under reaction conditions and revealing the mechanism by which Fe promotes activity and selectivity towards methane. We show that the increase of the conversion leads to hydroxylation of the Ni surface following the formation of water during the reaction. This excessive Ni surface hydroxylation has however a detrimental effect as shown by a controlled study. A dominant metallic Ni surface exists in conditions of higher selectivity towards methane whereas if an increase of the Ni surface hydroxylation occurs, a higher selectivity towards carbon monoxide is observed. The electronic structure analysis of the Fe species under reaction conditions reveals the existence of predominantly Fe(iii) species at the surface, whereas a mixture of Fe(ii)/Fe(iii) species is present underneath the surface when selectivity to methane is high. Our results highlight that Fe(ii) exerts a beneficial effect on maintaining Ni in a metallic state, whereas the extension of the Fe oxidation is accompanied by a more extended Ni surface hydroxylation with a negative impact on the selectivity towards methane.

8.
Nanoscale Adv ; 2(2): 669-678, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36133224

RESUMO

Although Pt is extensively used as a catalyst to purify automotive exhaust gas, it is desirable to reduce Pt consumption through size reduction because Pt is a rare element and an expensive noble metal. In this study, we successfully loaded a Pt17 cluster on γ-alumina (γ-Al2O3) (Pt17/γ-Al2O3) using [Pt17(CO)12(PPh3)8]Cl n (n = 1, 2) as a precursor. In addition, we demonstrated that Pt is not present in the form of an oxide in Pt17/γ-Al2O3 but instead has a framework structure as a metal cluster. Moreover, we revealed that Pt17/γ-Al2O3 exhibits higher catalytic activity for carbon monoxide and propylene oxidation than γ-Al2O3-supported larger Pt nanoparticles (PtNP/γ-Al2O3) prepared using the conventional impregnation method. Recently, our group discovered a simple method for synthesizing the precursor [Pt17(CO)12(PPh3)8]Cl n . Furthermore, Pt17 is a Pt cluster within the size range associated with high catalytic activity. By combining our established synthesis and loading methods, other groups can conduct further research on Pt17/γ-Al2O3 to explore its catalytic activities in greater depth.

9.
Nat Commun ; 9(1): 935, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29507285

RESUMO

The carbon-carbon coupling via electrochemical reduction of carbon dioxide represents the biggest challenge for using this route as platform for chemicals synthesis. Here we show that nanostructured iron (III) oxyhydroxide on nitrogen-doped carbon enables high Faraday efficiency (97.4%) and selectivity to acetic acid (61%) at very-low potential (-0.5 V vs silver/silver chloride). Using a combination of electron microscopy, operando X-ray spectroscopy techniques and density functional theory simulations, we correlate the activity to acetic acid at this potential to the formation of nitrogen-coordinated iron (II) sites as single atoms or polyatomic species at the interface between iron oxyhydroxide and the nitrogen-doped carbon. The evolution of hydrogen is correlated to the formation of metallic iron and observed as dominant reaction path over iron oxyhydroxide on oxygen-doped carbon in the overall range of negative potential investigated, whereas over iron oxyhydroxide on nitrogen-doped carbon it becomes important only at more negative potentials.

10.
Biotechnol J ; 13(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28862393

RESUMO

Antibodies are typical examples of biopharmaceuticals which are composed of numerous, almost infinite numbers of potential molecular entities called variants or isoforms, which constitute the microheterogeneity of these molecules. These variants are generated during biosynthesis by so-called posttranslational modification, during purification or upon storage. The variants differ in biological properties such as pharmacodynamic properties, for example, Antibody Dependent Cellular Cytotoxicity, complement activation, and pharmacokinetic properties, for example, serum half-life and safety. Recent progress in analytical technologies such as various modes of liquid chromatography and mass spectrometry has helped to elucidate the structure of a lot of these variants and their biological properties. In this review the most important modifications (glycosylation, terminal modifications, amino acid side chain modifications, glycation, disulfide bond variants and aggregation) are reviewed and an attempt is made to give an overview on the biological properties, for which the reports are often contradictory. Even though there is a deep understanding of cellular and molecular mechanism of antibody modification and their consequences, the clinical proof of the effects observed in vitro and in vivo is still not fully rendered. For some modifications such as core-fucosylation of the N-glycan and aggregation the effects are clear and should be monitored, but with others such as C-terminal lysine clipping the reports are contradictory. As a consequence it seems too early to tell if any modification can be safely ignored.


Assuntos
Anticorpos Monoclonais/genética , Citotoxicidade Celular Dependente de Anticorpos/genética , Isoformas de Proteínas/genética , Proteínas Recombinantes/genética , Anticorpos Monoclonais/química , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Imunoglobulina G/genética , Espectrometria de Massas , Isoformas de Proteínas/química , Processamento de Proteína Pós-Traducional/genética , Proteínas Recombinantes/química
11.
MAbs ; 8(8): 1548-1560, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27559765

RESUMO

We identified active isoforms of the chimeric anti-GD2 antibody, ch14.18, a recombinant antibody produced in Chinese hamster ovary cells, which is already used in clinical trials. 1,2,3 We separated the antibody by high resolution ion-exchange chromatography with linear pH gradient elution into acidic, main and basic charge variants on a preparative scale yielding enough material for an in-depth study of the sources and the effects of microheterogeneity. The binding affinity of the charge variants toward the antigen and various cell surface receptors was studied by Biacore. Effector functions were evaluated using cellular assays for antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. Basic charge variants showed increased binding to cell surface receptor FcγRIIIa, which plays a major role in regulating effector functions. Furthermore, increased binding of the basic fractions to the neonatal receptor was observed. As this receptor mediates the prolonged half-life of IgG in human serum, this data may well hint at an increased serum half-life of these basic variants compared to their more acidic counterparts. Different glycoform patterns, C-terminal lysine clipping and N-terminal pyroglutamate formation were identified as the main structural sources for the observed isoform pattern. Potential differences in structural stability between individual charge variant fractions by nano differential scanning calorimetry could not been detected. Our in-vitro data suggests that the connection between microheterogeneity and the biological activity of recombinant antibody therapeutics deserves more attention than commonly accepted.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Receptores de IgG/metabolismo , Animais , Afinidade de Anticorpos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Células CHO , Cricetinae , Cricetulus , Humanos , Isoformas de Proteínas/química , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Receptores de IgG/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo
12.
ChemSusChem ; 9(13): 1634-46, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27226255

RESUMO

Platinum and iridium polycrystalline foils were oxidized electrochemically through anodization to create thin platinum and iridium hydrous oxide layers, which were analyzed through laboratory photoelectron spectroscopy during heating and time series (temperature-programmed spectroscopy). The films contain oxygen in the form of bound oxides, water, and hydroxides and were investigated by depth profiling with high-energy photoelectron spectroscopy. The Pt films are unstable and begin to degrade immediately after removal from the electrolyte to form core-shell structures with a metallic inner core and a hydrous oxide outer shell almost devoid of Pt. However, evidence was found for metastable intermediate states of degradation; therefore, it may be possible to manufacture PtOx phases with increased stability. Heating the film to even 100 °C causes accelerated degradation, which shows that stoichiometric oxides such as PtO2 or PtO are not the active species in the electrolyte. The Ir films exhibit increased stability and higher surface Ir content, and gentle heating at low temperatures leads to a decrease in defect density. Although both layers are based on noble metals, their surface structures are markedly different. The complexity of such hydrous oxide systems is discussed in detail with the goal of identifying the film composition more precisely.


Assuntos
Irídio/química , Óxidos/química , Platina/química , Água/química , Temperatura
13.
Chemistry ; 21(27): 9619-23, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25974631

RESUMO

The identification of catalytically active sites (CASs) in heterogeneous catalysis is of vital importance to design and develop improved catalysts, but remains a great challenge. The CASs have been identified in the low-temperature selective catalytic reduction of nitrogen oxides by ammonia (SCR) over a hollandite manganese oxide (HMO) catalyst with a rod-shaped morphology and one-dimensional tunnels. Electron microscopy and synchrotron X-ray diffraction determine the surface and crystal structures of the one-dimensional HMO rods closed by {100} side facets and {001} top facets. A combination of X-ray absorption spectra, molecular probes with potassium and nitric oxide, and catalytic tests reveals that the CASs are located on the {100} side facets of the HMO rods rather than on the top facets or in the tunnels, and hence semi-tunnel structural motifs on the {100} facets are evidenced to be the CASs of the SCR reaction. This work paves the way to further investigate the intrinsic mechanisms of SCR reactions.

14.
J Chromatogr A ; 1373: 124-30, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25465369

RESUMO

Cation exchange chromatography has been routinely used for the quantification of monoclonal antibody (mAb) charge heterogeneity. A previously developed method utilizing pH gradients for the elution instead of salt gradients was validated according to current guidelines proposed by the ICH. The linearity, stability, accuracy, precision and the lower limit of quantification have been determined, using pure charge variant standards. The method is valid for the quantification of mAb samples with a charge heterogeneity between 1% and 50%. Three different approaches to obtaining pure standard material for the validation of bio-analytical methods for the quantification of charge heterogeneity of IgG are presented. These methods are based on salt gradient elution, pH gradient elution and displacement in cation exchange chromatography.


Assuntos
Anticorpos Monoclonais/análise , Cromatografia Líquida/métodos , Calibragem , Concentração de Íons de Hidrogênio
15.
Chem Mater ; 26(4): 1690-1701, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24587591

RESUMO

Carbon deposition following thermal methane decomposition under dry and steam reforming conditions has been studied on yttria-stabilized zirconia (YSZ), Y2O3, and ZrO2 by a range of different chemical, structural, and spectroscopic characterization techniques, including aberration-corrected electron microscopy, Raman spectroscopy, electric impedance spectroscopy, and volumetric adsorption techniques. Concordantly, all experimental techniques reveal the formation of a conducting layer of disordered nanocrystalline graphite covering the individual grains of the respective pure oxides after treatment in dry methane at temperatures T ≥ 1000 K. In addition, treatment under moist methane conditions causes additional formation of carbon-nanotube-like architectures by partial detachment of the graphite layers. All experiments show that during carbon growth, no substantial reduction of any of the oxides takes place. Our results, therefore, indicate that these pure oxides can act as efficient nonmetallic substrates for methane-induced growth of different carbon species with potentially important implications regarding their use in solid oxide fuel cells. Moreover, by comparing the three oxides, we could elucidate differences in the methane reactivities of the respective SOFC-relevant purely oxidic surfaces under typical SOFC operation conditions without the presence of metallic constituents.

16.
Micron ; 63: 15-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24629520

RESUMO

Combined Bloch-wave and density functional theory simulations are performed to investigate the effects of different channelling conditions on the fine-structure of electron energy-loss spectra. The simulated spectra compare well with experiments. Furthermore, we demonstrate that using this technique, the site-specific investigation of atomic orbitals is possible. This opens new possibilities for chemical analyses.

17.
ChemSusChem ; 7(1): 179-94, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24133011

RESUMO

This work aims to clarify the nanostructural transformation accompanying the loss of activity and selectivity for the hydrogen peroxide synthesis of palladium and gold-palladium nanoparticles supported on N-functionalized carbon nanotubes. High-resolution X-ray photoemission spectroscopy (XPS) allows the discrimination of metallic palladium, electronically modified metallic palladium hosting impurities, and cationic palladium. This is paralleled by the morphological heterogeneity observed by high-resolution TEM, in which nanoparticles with an average size of 2 nm coexisted with very small palladium clusters. The morphological distribution of palladium is modified after reaction through sintering and dissolution/redeposition pathways. The loss of selectivity is correlated to the extent to which these processes occur as a result of the instability of the particle at the carbon surface. We assign beneficial activity in the selective hydrogenation of oxygen to palladium clusters with a modified electronic structure compared with palladium metal or palladium oxides. These beneficial species are formed and stabilized on carbons modified with nitrogen atoms in substitutional positions. The formation of larger metallic palladium particles not only reduces the number of active sites for the synthesis, but also enhances the activity for deep hydrogenation to water. The structural instability of the active species is thus detrimental in a dual way. Minimizing the chance of sintering of palladium clusters by all means is thus the key to better performing catalysts.


Assuntos
Ouro/química , Peróxido de Hidrogênio/química , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Paládio/química , Adsorção , Calorimetria , Monóxido de Carbono/química , Catálise , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/ultraestrutura , Espectroscopia Fotoeletrônica , Ácidos Sulfúricos/química
18.
Chemistry ; 19(50): 16938-45, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24248701

RESUMO

The effect of the gas-phase chemical potential on surface chemistry and reactivity of molybdenum carbide has been investigated in catalytic reactions of propane in oxidizing and reducing reactant mixtures by adding H2, O2, H2O, and CO2 to a C3H8/N2 feed. The balance between surface oxidation state, phase stability, carbon deposition, and the complex reaction network involving dehydrogenation reactions, hydrogenolysis, metathesis, water-gas shift reaction, hydrogenation, and steam reforming is discussed. Raman spectroscopy and a surface-sensitive study by means of in situ X-ray photoelectron spectroscopy evidence that the dynamic formation of surface carbon species under a reducing atmosphere strongly shifts the product spectrum to the C3-alkene at the expense of hydrogenolysis products. A similar response of selectivity, which is accompanied by a boost of activity, is observed by tuning the oxidation state of Mo in the presence of mild oxidants, such as H2O and CO2, in the feed as well as by V doping. The results obtained allow us to draw a picture of the active catalyst surface and to propose a structure-activity correlation as a map for catalyst optimization.

20.
Chem Commun (Camb) ; 49(95): 11152-4, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24084858

RESUMO

Pt triambic icosahedral nanocrystals (TIH NCs) enclosed by {771} high-index facets were successfully synthesized electrochemically, for the first time, in ChCl-urea based deep eutectic solvents, and exhibited higher electrocatalytic activity and stability towards ethanol electrooxidation than a commercial Pt black catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...