Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res ; 71: 103173, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37540965

RESUMO

Biallelic pathogenic variants in ALDH7A1 are associated with pyridoxine-dependent epilepsy (PDE). ALDH7A1 encodes for the third enzyme of the lysine catabolism pathway. In this study a human isogenic ALDH7A1 knock-out iPSC line was created using CRISPR/Cas9 technology. One clone (SCTCi019-B) with biallelic deletions in ALDH7A1 was obtained and fully characterized, showing expression of pluripotency markers, a normal karyotype and no off-targets. Human-based models derived from this iPSC line will contribute to gain insights in the molecular mechanism of disease underlying PDE.


Assuntos
Epilepsia , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas CRISPR-Cas/genética , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Epilepsia/genética , Mutação
2.
J Inherit Metab Dis ; 46(3): 371-390, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020324

RESUMO

Glutaric aciduria type 1 (GA1) is a rare neurometabolic disease caused by pathogenic variants in the gene encoding the enzyme glutaryl-CoA dehydrogenase (GCDH). We performed an extensive literature search to collect data on GA1 patients, together with unpublished cases, to provide an up-to-date genetic landscape of GCDH pathogenic variants and to investigate potential genotype-phenotype correlation, as this is still poorly understood. From this search, 421 different GCDH pathogenic variants have been identified, including four novel variants; c.179T>C (p.Leu60Pro), c.214C>T (p.Arg72Cys), c.309G>C (p.Leu103Phe), and c.665T>C (p.Phe222Ser).The variants are mostly distributed across the entire gene; although variant frequency in GA1 patients is relatively high in the regions encoding for active domains of GCDH. To investigate potential genotype-phenotype correlations, phenotypic descriptions of 532 patients have been combined and evaluated using novel combinatorial analyses. To do so, various clinical phenotypes were determined for each pathogenic variant by combining the information of all GA1 patients reported with this pathogenic variant, and subsequently mapped onto the 2D and 3D GCDH protein structure. In addition, the predicted pathogenicity of missense variants was analyzed using different in silico prediction score models. Both analyses showed an almost similar distribution of the highly pathogenic variants across the GCDH protein, although some hotspots, including the active domain, were observed. Moreover, it was demonstrated that highly pathogenic variants are significantly correlated with lower residual enzyme activity and the most accurate estimation was achieved by the REVEL score. A clear correlation of the genotype and the clinical phenotype however is still lacking.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Humanos , Glutaril-CoA Desidrogenase/genética , Glutaril-CoA Desidrogenase/metabolismo , Encefalopatias Metabólicas/metabolismo , Mutação de Sentido Incorreto , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo
3.
Stem Cell Res ; 69: 103069, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36947993

RESUMO

GCDH encodes for the enzyme catalyzing the sixth step of the lysine catabolism pathway. Biallelic pathogenic variants in GCDH have been associated with glutaric aciduria type 1 (GA1). In this study CRISPR/Cas9 technology was used to create an isogenic GCDH knock-out human iPSC line. One clone with a biallelic deletion (SCTCi019-A) in GCDH was obtained and fully characterized, revealing a normal karyotype, no off-targets detected and expression of pluripotency markers. This iPSC line can contribute to gain insights in the molecular mechanism of disease.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas CRISPR-Cas/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/metabolismo
4.
J Nucl Med ; 59(5): 780-786, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29242405

RESUMO

Anaplastic thyroid cancer (ATC) is a rare malignancy that accounts for 1%-2% of all thyroid cancers. ATC is one of the most aggressive human cancers, with rapid growth, tumor invasion, and development of distant metastases. The median survival is only 5 mo, and the 1-y survival is less than 20%. Moreover, as a result of severe dedifferentiation, including the loss of human sodium iodide symporter (hNIS) expression, radioactive iodide (RAI) therapy is ineffective. Recently, we have demonstrated beneficial effects of autophagy-activating digitalislike compounds (DLCs) on redifferentiation and concomitant restoration of iodide uptake in RAI-refractory papillary and follicular thyroid cancer cell lines. In the current study, the effects of DLCs on differentiation and proliferation of ATC cell lines were investigated. Methods: Autophagy activity was assessed in ATC patient tissues by immunofluorescent staining for the autophagy marker microtubule-associated protein 1A/1B-light chain 3 (LC3). In addition, the effect of autophagy-activating DLCs on the proliferation, gene expression profile, and iodide uptake capacity of ATC cell lines was studied. Results: Diminished autophagy activity was observed in ATC tissues, and in vitro treatment of ATC cell lines with DLCs robustly restored hNIS and thyroglobulin expression and iodide uptake capacity. In addition, proliferation was strongly reduced by induction of cell cycle arrest and, to some extent, cell death. Mechanistically, reactivation of functional hNIS expression could be attributed to activation of the transcription factors activating transcription factor 3 and protooncogene c-fosConclusion: DLCs could represent a promising adjunctive therapy for restoring iodide avidity within the full spectrum from RAI-refractory dedifferentiated to ATC.


Assuntos
Digitalis/química , Iodetos/metabolismo , Simportadores/metabolismo , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Adenocarcinoma Folicular/tratamento farmacológico , Adenocarcinoma Folicular/metabolismo , Autofagia , Ciclo Celular , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Perfilação da Expressão Gênica , Humanos , Radioisótopos do Iodo , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tireoglobulina/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...