Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38675126

RESUMO

The COVID-19 pandemic has made clear the need for effective and rapid vaccine development methods. Conventional inactivated virus vaccines, together with new technologies like vector and mRNA vaccines, were the first to be rolled out. However, the traditional methods used for virus inactivation can affect surface-exposed antigen, thereby reducing vaccine efficacy. Gamma rays have been used in the past to inactivate viruses. We recently proposed that high-energy heavy ions may be more suitable as an inactivation method because they increase the damage ratio between the viral nucleic acid and surface proteins. Here, we demonstrate that irradiation of the influenza virus using heavy ion beams constitutes a suitable method to develop effective vaccines, since immunization of mice by the intranasal route with the inactivated virus resulted in the stimulation of strong antigen-specific humoral and cellular immune responses.

2.
Phys Med ; 120: 103325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493583

RESUMO

PURPOSE: The present study aimed to develop a porous structure with plug-ins (PSP) to broaden the Bragg peak width (BPW, defined as the distance in water between the proximal and distal 80% dose) of the carbon ion beam while maintaining a sharp distal falloff width (DFW, defined as the distance along the beam axis where the dose in water reduces from 80% to 20%). METHODS: The binary voxel models of porous structure (PS) and PSP were established in the Monte Carlo code FLUKA and the corresponding physical models were manufactured by 3D printing. Both experiment and simulation were performed for evaluating the modulation capacity of PS and PSP. BPWs and DFWs derived from each integral depth dose curves were compared. Fluence homogeneity of 430 MeV/u carbon-ion beam passing through the PSP was recorded by analyzing radiochromic films at six different locations downstream the PSP in the experiment. Additionally, by changing the beam spot size and incident position on the PSP, totally 48 different carbon-ion beams were simulated and corresponding deviations of beam metrics were evaluated to test the modulating stability of PSP. RESULTS: According to the measurement data, the use of PSP resulted in an average increase of 0.63 mm in BPW and a decrease of 0.74 mm in DFW compared to PS. The 2D radiation field inhomogeneities were lower than 3 % when the beam passing through a ≥ 10 cm PMMA medium. Furthermore, employing a spot size of ≥ 6 mm ensures that beam metric deviations, including BPW, DFW, and range, remain within a deviation of 0.1 mm across various incident positions. CONCLUSION: The developed PSP demonstrated its capability to effectively broaden the BPW of carbon ion beams while maintaining a sharp DFW comparing to PS. The superior performance of PSP, indicates its potential for clinical use in the future.


Assuntos
Radioterapia com Íons Pesados , Terapia com Prótons , Método de Monte Carlo , Porosidade , Radioterapia com Íons Pesados/métodos , Carbono , Água , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Terapia com Prótons/métodos
3.
Z Med Phys ; 34(1): 153-165, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37940400

RESUMO

The generation of space radiation on Earth is essential to study and predict the effects of radiation on space travelers, electronics, or materials during future long-term space missions. Next to the heavy ions of the galactic cosmic rays, solar particle events play a major role concerning the radiation risk in space, which consist of intermediate-energy protons with broad spectra and energies up to a few hundred MeV. This work describes an approach for the ground-based generation of solar particle events. As a proof of principle, a passive beam modulator with a specific funnel-shaped periodic structure was designed and is used to convert a monoenergetic proton beam into a spectral proton energy distribution, mimicking a solar particle event from August 1972, which is known as one of the strongest recorded SPE events. The required proton beam of 220 MeV can be generated at many existing particle accelerators at research or particle therapy facilities. The planning, manufacturing and testing of the modulator is described step by step. Its correct manufacturing and the characteristics of the solar particle event simulator are tested experimentally and by means of Monte Carlo simulations. Future modulators will follow the same concept with minor adjustments such as a larger lateral extension. As of now, the presented beam modulator is available to the research community to conduct experiments at GSI for exposure under solar particle event conditions. In addition, researchers can use and apply the described concept to design and print their individualized modulator to reproduce any desired solar particle event spectrum or request the presented modulator geometry from the authors.


Assuntos
Radiação Cósmica , Voo Espacial , Atividade Solar , Prótons , Impressão Tridimensional , Doses de Radiação
4.
Phys Med ; 104: 136-144, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36403543

RESUMO

PURPOSE: Radiotherapy escalating dose rates above 50Gys-1, might offer a great potential in treating tumours while further sparing healthy tissue. However, these ultra-high intensities of FLASH-RT lead to new challenges with regard to dosimetry and beam monitoring. FLASH experiments at HIT (Heidelberg Ion Beam Therapy Center) and at GSI (GSI Helmholtz Centre for Heavy Ion Research) have shown a significant loss of signal in the beam monitoring system due to recombination effects. To enable accurate beam monitoring, this work investigates the recombination loss of different fill gases in the plane parallel ionisation chambers (ICs). METHODS: Therefore, saturation curves at high intensities were measured for the currently used fill gases Ar/CO2 (80/20) and pure He and also for He/CO2 mixtures as alternative fill gases. Furthermore, breakdown voltages and ion mobilities were measured in ICs filled with He/CO2 mixtures. A numerical model for volume recombination in plane parallel ionisation chambers was developed and implemented in Python. This includes a novel simulation method of the space charge effect from the charge carriers in the detector volume and predicts a significant effect on the electric field for high intensity beams. RESULTS: Even at high intensities the He/CO2 mixtures allow operation of the ICs at an electric field strength of 2 kVcm-1 or more which reduces recombination to negligible levels at intensities larger than 3 × 101012C-ions per second. Our measurements show that added fractions of CO2 to He decrease the ion mobility in the fill gas but significantly increase the breakdown voltage in the ICs compared to pure He.


Assuntos
Radioterapia , Dióxido de Carbono , Hélio , Humanos
5.
Nucl Instrum Methods Phys Res A ; 1043: 167464, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36345417

RESUMO

Owing to the favorable depth-dose distribution and the radiobiological properties of heavy ion radiation, ion beam therapy shows an improved success/toxicity ratio compared to conventional radiotherapy. The sharp dose gradients and very high doses in the Bragg peak region, which represent the larger physical advantage of ion beam therapy, make it also extremely sensitive to range uncertainties. The use of ß +-radioactive ion beams would be ideal for simultaneous treatment and accurate online range monitoring through PET imaging. Since all the unfragmented primary ions are potentially contributing to the PET signal, these beams offer an improved image quality while preserving the physical and radiobiological advantages of the stable counterparts. The challenging production of radioactive ion beams and the difficulties in reaching high intensities, have discouraged their clinical application. In this context, the project Biomedical Applications of Radioactive ion Beams (BARB) started at GSI (Helmholtzzentrum für Schwerionenforschung GmbH) with the main goal to assess the technical feasibility and investigate possible advantages of radioactive ion beams on the pre-clinical level. During the first experimental campaign 11C and 10C beams were produced and isotopically separated with the FRagment Separator (FRS) at GSI. The ß +-radioactive ion beams were produced with a beam purity of 99% for all the beam investigated (except one case where it was 94%) and intensities potentially sufficient to treat a small animal tumors within few minutes of irradiation time, ∼ 106 particle per spill for the 10C and ∼ 107 particle per spill for the 11C beam, respectively. The impact of different ion optical parameters on the depth dose distribution was studied with a precision water column system. In this work, the measured depth dose distributions are presented together with results from Monte Carlo simulations using the FLUKA software.

6.
Radiat Res ; 198(2): 107-119, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35930014

RESUMO

Galactic cosmic rays (GCR) are among the main deterrents to manned space exploration. Currently, the most realistic way to reduce the dangers caused by GCR to acceptable levels is passive shielding. Light materials guarantee the strongest dose attenuation per unit mass. High-density polyethylene is considered the gold standard for radiation protection in space. Nevertheless, accelerator-based experimental campaigns already showed the advantages of more hydrogen-rich innovative shielding materials such as lithium hydride. The experimental campaigns of this work focused on the absorbed dose attenuation properties of lithium-based hydrides chemically stabilized with a paraffin matrix. Such materials were compared to pure lithium-based hydrides, polyethylene, structural materials such as spacecraft aluminum alloys and lithium batteries, and in situ shielding materials such as Moon regolith and its main components silicon and silicon dioxide. The experimental results were compared to simulations performed with PHITS, FLUKA, and Geant4, which are among the most used Monte Carlo codes for radiation protection in space. The simulations showed systematic differences and highlighted the pressing need for reliable nuclear cross-section models.


Assuntos
Radiação Cósmica , Proteção Radiológica , Voo Espacial , Radiação Cósmica/efeitos adversos , Lítio , Método de Monte Carlo , Doses de Radiação , Proteção Radiológica/métodos
7.
Radiother Oncol ; 175: 185-190, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35537606

RESUMO

BACKGROUND AND PURPOSE: The FLASH effect is a potential breakthrough in radiotherapy because ultra-high dose-rate irradiation can substantially widen the therapeutic window. While the normal tissue sparing at high doses and short irradiation times has been demonstrated with electrons, photons, and protons, so far evidence with heavy ions is limited to in vitro cell experiments. Here we present the first in vivo results with high-energy 12C-ions delivered at an ultra-high dose rate. MATERIALS AND METHODS: LM8 osteosarcoma cells were subcutaneously injected in the posterior limb of female C3H/He mice 7 days before radiation exposure. Both hind limbs of the animals were irradiated with 240 MeV/n 12C-ions at ultra-high (18 Gy in 150 ms) or conventional dose rate (∼18 Gy/min). Tumor size was measured until 28 days post-exposure, when animals were sacrificed and lungs, limb muscles, and tumors were collected for further histological analysis. RESULTS: Irradiation with carbon ions was able to control the tumour both at conventional and ultra-high dose rate. FLASH decreases normal tissue toxicity as demonstrated by the reduced structural changes in muscle compared to conventional dose-rate irradiation. Carbon ion irradiation in FLASH conditions significantly reduced lung metastasis compared to conventional dose-rate irradiation and sham-irradiated animals. CONCLUSIONS: We demonstrated the FLASH effect in vivo with high-energy carbon ions. In addition to normal tissue sparing, we observed tumor control and a substantial reduction of lung metastasis in an osteosarcoma mouse model.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Osteossarcoma , Feminino , Camundongos , Animais , Dosagem Radioterapêutica , Prótons , Carbono/uso terapêutico , Camundongos Endogâmicos C3H , Osteossarcoma/radioterapia , Neoplasias Pulmonares/radioterapia , Neoplasias Ósseas/radioterapia
8.
Life Sci Space Res (Amst) ; 33: 58-68, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35491030

RESUMO

The exposure to galactic cosmic radiation (GCR) is a major health concern for astronauts. Crewed missions with durations of several years are foreseen in future space exploration projects such as permanent habitats on the Moon and flights to Mars. This aim requires elaborate space radiation shielding concepts and a proper understanding of the underlying radiation physics and radiobiology as well as their interplay. In the present work, Monte Carlo simulations to assess the performance of different materials (polyethylene, aluminum, Moon regolith) as thick shields (up to 400 g/cm2) against GCR were conducted using the FLUKA code. Absorbed dose, dose equivalent and the mean quality factor at 1 cm depth in the ICRU sphere as a function of shielding thickness were calculated in a spherical shell configuration for both solar minimum and solar maximum GCR conditions. Large differences were observed in the performance of the studied materials as thick GCR shields. Special attention was paid to the build-up and moderation of secondary neutrons. A method to reduce the neutron contributions to ambient dose equivalent by means of a two-layer shielding combination is proposed. The present study can be useful for considerations on thick shielding of Moon or Mars habitats built from local regolith.


Assuntos
Radiação Cósmica , Voo Espacial , Astronautas , Radiação Cósmica/efeitos adversos , Humanos , Método de Monte Carlo , Nêutrons
9.
Phys Med Biol ; 67(15)2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35395649

RESUMO

Helium ion beam therapy for the treatment of cancer was one of several developed and studied particle treatments in the 1950s, leading to clinical trials beginning in 1975 at the Lawrence Berkeley National Laboratory. The trial shutdown was followed by decades of research and clinical silence on the topic while proton and carbon ion therapy made debuts at research facilities and academic hospitals worldwide. The lack of progression in understanding the principle facets of helium ion beam therapy in terms of physics, biological and clinical findings persists today, mainly attributable to its highly limited availability. Despite this major setback, there is an increasing focus on evaluating and establishing clinical and research programs using helium ion beams, with both therapy and imaging initiatives to supplement the clinical palette of radiotherapy in the treatment of aggressive disease and sensitive clinical cases. Moreover, due its intermediate physical and radio-biological properties between proton and carbon ion beams, helium ions may provide a streamlined economic steppingstone towards an era of widespread use of different particle species in light and heavy ion therapy. With respect to the clinical proton beams, helium ions exhibit superior physical properties such as reduced lateral scattering and range straggling with higher relative biological effectiveness (RBE) and dose-weighted linear energy transfer (LETd) ranging from ∼4 keVµm-1to ∼40 keVµm-1. In the frame of heavy ion therapy using carbon, oxygen or neon ions, where LETdincreases beyond 100 keVµm-1, helium ions exhibit similar physical attributes such as a sharp lateral penumbra, however, with reduced radio-biological uncertainties and without potentially spoiling dose distributions due to excess fragmentation of heavier ion beams, particularly for higher penetration depths. This roadmap presents an overview of the current state-of-the-art and future directions of helium ion therapy: understanding physics and improving modeling, understanding biology and improving modeling, imaging techniques using helium ions and refining and establishing clinical approaches and aims from learned experience with protons. These topics are organized and presented into three main sections, outlining current and future tasks in establishing clinical and research programs using helium ion beams-A. Physics B. Biological and C. Clinical Perspectives.


Assuntos
Radioterapia com Íons Pesados , Terapia com Prótons , Carbono/uso terapêutico , Radioterapia com Íons Pesados/métodos , Hélio/uso terapêutico , Íons , Prótons , Eficiência Biológica Relativa
10.
Front Oncol ; 12: 830080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402273

RESUMO

Fiducial markers are used for image guidance to verify the correct positioning of the target for the case of tumors that can suffer interfractional motion during proton therapy. The markers should be visible on daily imaging, but at the same time, they should produce minimal streak artifacts in the CT scans for treatment planning and induce only slight dose perturbations during particle therapy. In this work, these three criteria were experimentally investigated at the Heidelberg Ion Beam Therapy Center. Several small fiducial markers with different geometries and materials (gold, platinum, and carbon-coated ZrO2) were evaluated. The streak artifacts on treatment planning CT were measured with and without iMAR correction, showing significantly smaller artifacts from markers lighter than 6 mg and a clear improvement with iMAR correction. Daily imaging as X-ray projections and in-room mobile CT were also performed. Markers heavier than 6 mg showed a better contrast in the X-ray projections, whereas on the images from the in-room mobile CT, all markers were clearly visible. In the other part of this work, fluence perturbations of proton beams were measured for the same markers by using a tracker system of several high spatial resolution CMOS pixel sensors. The measurements were performed for single-energy beams, as well as for a spread-out Bragg peak. Three-dimensional fluence distributions were computed after reconstructing all particle trajectories. These measurements clearly showed that the ZrO2 markers and the low-mass gold/platinum markers (0.35mm diameter) induce perturbations being 2-3 times lower than the heavier gold or platinum markers of 0.5mm diameter. Monte Carlo simulations, using the FLUKA code, were used to compute dose distributions and showed good agreement with the experimental data after adjusting the phase space of the simulated proton beam compared to the experimental beam.

11.
Biomed Phys Eng Express ; 8(3)2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35226887

RESUMO

The purpose of this work was to develop and manufacture a 3D range-modulator (3D RM) for a complex target contour for scanned proton therapy. The 3D RM is considered to be a viable technique for the very fast dose application in patient-specific tumors with only one fixed energy. The RM was developed based on a tumor from a patient CT and manufactured with high-quality 3D printing techniques with both polymer resin and aluminum. Monte Carlo simulations were utilized to investigate its modulating properties and the resulting dose distribution. Additionally, the simulation results were validated with measurements at the Marburg Ion-Beam Therapy Centre. For this purpose, a previously developed water phantom was used to conduct fast, automated high-resolution dose measurements. The results show a very good agreement between simulations and measurements and indicate that highly homogeneous dose distributions are possible. The delivered dose is conformed to the distal as well as to the proximal edge of the target. The 3D range-modulator concept combines a high degree of dose homogeneity and conformity, comparable to standard IMPT with very short irradiation times, promising clinically applicable dose distributions for lung and/or FLASH treatment, comparable and competitive to those from conventional irradiation techniques.


Assuntos
Terapia com Prótons , Simulação por Computador , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Água
12.
Int J Radiat Oncol Biol Phys ; 112(4): 1012-1022, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34813912

RESUMO

PURPOSE: To establish a beam monitoring and dosimetry system to enable the FLASH dose rate carbon ion irradiation and investigate, at different oxygen concentrations, the in vitro biological response in comparison to the conventional dose rate. METHODS AND MATERIALS: CHO-K1 cell response to irradiation at different dose rates and at different levels of oxygenation was studied using clonogenic assay. The Heidelberg Ion-Beam Therapy Center (HIT) synchrotron, after technical improvements, was adjusted to extract ≥5 × 108 12C ions within approximately 150 milliseconds. The beam monitors were filled with helium. RESULTS: The FLASH irradiation with beam scanning yields a dose of 7.5 Gy (homogeneity of ±5%) for a 280 MeV/u beam in a volume of at least 8 mm in diameter and a corresponding dose rate of 70 Gy/s (±20%). The dose repetition accuracy is better than 2%, the systematic uncertainty is better than 2%. Clonogenic assay demonstrates a significant FLASH sparing effect which is strongly oxygenation-dependent and mostly pronounced at 0.5% O2 but absent at 0% and 21% O2. CONCLUSION: The FLASH dose rates >40 Gy/s were achieved with carbon beams. Cell survival analysis revealed FLASH dose rate sparing in hypoxia (0.5%-4% O2).


Assuntos
Radioterapia com Íons Pesados , Carbono , Hélio , Radiometria , Dosagem Radioterapêutica
13.
Front Oncol ; 11: 737050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504803

RESUMO

Several techniques are under development for image-guidance in particle therapy. Positron (ß+) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by ß+-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using ß+-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separation with the fragment separator FRS in the FAIR-phase-0 in Darmstadt, it is now possible to reach radioactive ion beams with sufficient intensity to treat a tumor in small animals. This was the motivation of the BARB (Biomedical Applications of Radioactive ion Beams) experiment that is ongoing at GSI in Darmstadt. This paper will present the plans and instruments developed by the BARB collaboration for testing the use of radioactive beams in cancer therapy.

14.
Phys Med Biol ; 66(9)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33730702

RESUMO

There is increasing interest in using helium ions for radiotherapy, complementary to protons and carbon ions. A large number of patients were treated with4He ions in the US heavy ion therapy project and novel4He ion treatment programs are under preparation, for instance in Germany and Japan.3He ions have been proposed as an alternative to4He ions because the acceleration of3He is technically less difficult than4He. In particular, beam contaminations have been pointed out as a potential safety issue for4He ion beams. This motivated a series of experiments with3He ion beams at Gesellschaft für Schwerionenforschung (GSI), Darmstadt. Measured3He Bragg curves and fragmentation data in water are presented in this work. Those experimental data are compared with FLUKA Monte Carlo simulations. The physical characteristics of3He ion beams are compared to those of4He, for which a large set of data became available in recent years from the preparation work at the Heidelberger Ionenstrahl-Therapiezentrum (HIT). The dose distributions (spread out Bragg peaks, lateral profiles) that can be achieved with3He ions are found to be competitive to4He dose distributions. The effect of beam contaminations on4He depth dose distribution is also addressed. It is concluded that3He ions can be a viable alternative to4He, especially for future compact therapy accelerator designs and upgrades of existing ion therapy facilities.


Assuntos
Radioterapia com Íons Pesados , Hélio , Humanos , Íons , Método de Monte Carlo , Radiometria
15.
Z Med Phys ; 31(2): 203-214, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32711939

RESUMO

This paper introduces the concept of a 2D range-modulator as a static device for generating spread-out Bragg peaks at very small distances to the target. The 2D range-modulator has some distinct advantages that can be highly useful for different research projects in particle therapy facilities. Most importantly, it creates an instantaneous, quasi-static irradiation field with only one energy, thus decreasing irradiation time tremendously. In addition, it can be manufactured fast and cost efficiently and its SOBP width and shape can be adjusted easily for the specific purpose/experiment. As the modulator is a static element, there is no need for rotation (e.g. like in a modulation wheel) or lateral oscillation and due to the small base structure period it can be positioned close to the target. Two different rapid prototyping manufacturing techniques were utilized. The modulation properties of one polymer and one steel modulator were investigated with both simulations and measurements. For this purpose, a sophisticated water phantom system (WERNER), that can perform fast, completely automated and high resolution dose measurements, was developed. Using WERNER, the dose distribution of a modulator can be verified quickly and reliably, both during experiments, as well as in a time constrained clinical environment. The maximum deviation between the Monte Carlo simulations and dose measurements in the spread-out Bragg peak region was 1.4% and 4% for the polymer and steel modulator respectively. They were able to create spread-out Bragg peaks with a high degree of dose homogeneity, thus validating the whole process chain, from the mathematical optimization and modulator development, to manufacturing, MC simulations and dose measurements. Combining the convenience, flexibility and cost-effectiveness of rapid prototyping with the advantages of highly customizable modulators, that can be adapted for different experiments, the 2D range-modulator is considered a very useful tool for a variety of research objectives. Moreover, we have successfully shown that the manufacturing of 2D modulators with high quality and high degree of homogeneity is possible, paving the way for the further development of the more complex 3D range-modulators, which are considered a viable option for the very fast treatment of moving targets and/or FLASH irradiation.


Assuntos
Terapia com Prótons , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Água
16.
J Appl Clin Med Phys ; 21(10): 227-232, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32991056

RESUMO

PURPOSE: Three-dimensional (3D) dosimetry is a necessity to validate patient-specific treatment plans in particle therapy as well as to facilitate the development of novel treatment modalities. Therefore, a vendor-agnostic water phantom was developed and verified to measure high resolution 3D dose distributions. METHODS: The system was experimentally validated at the Marburger Ionenstrahl-Therapiezentrum using two ionization chamber array detectors (PTW Octavius 1500XDR and 1000P) with 150.68 MeV proton and 285.35 MeV/u 12 C beams. The dose distribution of several monoenergetic and complex scanned fields were measured with different step sizes to assess the reproducibility, absolute positioning accuracy, and general performance of the system. RESULTS: The developed system was successfully validated and used to automatically measure high resolution 3D dose distributions. The reproducibility in depth was better than ±25 micron. The roll and tilt uncertainty of the detector was estimated to be smaller than ±3 mrad. CONCLUSIONS: The presented system performed fully automated, high resolution 3D dosimetry, suitable for the validation of complex radiation fields in particle therapy. The measurement quality is comparable to commercially available systems.


Assuntos
Radiometria , Água , Humanos , Imagens de Fantasmas , Prótons , Reprodutibilidade dos Testes
17.
Phys Med Biol ; 65(8): 085005, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32053811

RESUMO

Fiducial markers are nowadays a common tool for patient positioning verification before radiotherapy treatment. These markers should be visible on x-ray projection imaging, produce low streak artifacts on CTs and induce small dose perturbations due to edge-scattering effects during the ion-beam therapy treatment. In this study, the latter effect was investigated and the perturbations created by the markers were evaluated with a new measurement method using a tracker system composed of six CMOS pixel sensors. The present method enables the determination of the particle trajectory before and after the target. The experiments have been conducted at the Marburg Ion Beam Therapy Center with carbon ion beams and the measurement concept was validated by comparison with radiochromic films. This work shows that the new method is very efficient and precise to measure the perturbations due to fiducial markers with a tracker system. Three dimensional fluence distributions of all particle trajectories were reconstructed and the maximum cold spots due to the markers and their position along the beam axis were quantified. In this study, four small commercial markers with different geometries and materials (gold and carbon-coated ZrO2) were evaluated. The gold markers showed stronger perturbations than the lower density ones. However, it is important to consider that low density and low atomic number fiducial markers are not always visible on x-ray projections.


Assuntos
Marcadores Fiduciais , Radioterapia com Íons Pesados/normas , Posicionamento do Paciente , Espalhamento de Radiação , Artefatos , Ouro , Humanos , Planejamento da Radioterapia Assistida por Computador
19.
Phys Med Biol ; 64(20): 205012, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31530751

RESUMO

Measured cross sections for the production of the PET isotopes [Formula: see text], [Formula: see text] and [Formula: see text] from carbon and oxygen targets induced by protons (40-220 [Formula: see text]) and carbon ions (65-430 [Formula: see text]) are presented. These data were obtained via activation measurements of irradiated graphite and beryllium oxide targets using a set of three scintillators coupled by a coincidence logic. The measured cross sections are relevant for the PET particle range verification method where accurate predictions of the [Formula: see text] emitter distribution produced by therapeutic beams in the patient tissue are required. The presented dataset is useful for validation and optimization of the nuclear reaction models within Monte Carlo transport codes. For protons the agreement of a radiation transport calculation using the measured cross sections with a thick target PET measurement is demonstrated.


Assuntos
Radioisótopos de Carbono/metabolismo , Radioterapia com Íons Pesados , Radioisótopos de Oxigênio/metabolismo , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Terapia com Prótons , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica
20.
Radiat Res ; 191(2): 154-161, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30499384

RESUMO

The harmful effects of space radiation pose a serious health risk to astronauts participating in future long-term missions. Such radiation effects must be considered in the design phase of space vessels as well as in mission planning. Crew radioprotection during long periods in deep space (e.g., transit to Mars) represents a major challenge, especially because of the strong restrictions on the passive shielding load allowed on-board the vessel. Novel materials with better shielding performance compared to the "gold standard" high-density polyethylene are therefore greatly needed. Because of the high hydrogen content of hydrides, lithium hydride has been selected as a starting point for further studies of promising candidates to be used as passive shielding materials. In the current experimental campaign, the shielding performance of lithium hydride was assessed by measuring normalized dose, primary beam attenuation and neutron ambient dose equivalent using 430 MeV/u 12C, 600 MeV/u 12C and 228 MeV proton beams. The experimental data were then compared to predictions from the Monte Carlo transport codes PHITS and GRAS. The experimental results show an increased shielding effectiveness of lithium hydride compared to reference materials like polyethylene. For instance, the attenuation length for 600 MeV/u 12C primary particles in lithium hydride is approximately 20% shorter compared to polyethylene. Furthermore, the comparison results between both transport codes indicates that the standard Tripathi-based total reaction cross-section model of PHITS cannot accurately reproduce the presented experimental data, whereas GRAS shows reasonable agreement.


Assuntos
Radiação Cósmica , Compostos de Lítio/química , Proteção Radiológica/métodos , Hidrogênio/análise , Método de Monte Carlo , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...