Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 168902, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38029991

RESUMO

Oxidative potential (OP), defined as the ability of particulate matter (PM) to generate reactive oxygen species (ROS), has been considered as a potential health-related metric for PM. Particles with different sizes have different OP and deposition efficiencies in the respiratory tract and pose different health risks. In this study, size-segregated PM samples were collected at a coastal urban site in Xiamen, a port city in southeastern China, between August 2020 and September 2021. The water-soluble constituents, including inorganic ions, elements and organic carbon, were determined. Total volume-normalized OP based on the dithiothreitol assay was highest in spring (0.241 ± 0.033 nmol min-1 m-3) and lowest in summer (0.073 ± 0.006 nmol min-1 m-3). OP had a biomodal distribution with peaks at 0.25-0.44 µm and 1.0-1.4 µm in spring, summer, and winter and a unimodal pattern with peak at 0.25-0.44 µm in fall, which were different from the patterns of redox-active species. Variations in the seasonality of fine and coarse mode OP and their correlations with water-soluble constituents showed that the size distribution patterns of OP could be attributed to the combined effects of the size distributions of transition metals and redox-active organics and the interactions between them which varied with emissions, meteorological conditions and atmospheric processes. Respiratory tract deposition model indicated that the deposited OP and the toxic elements accounted for 47.9 % and 36.8 % of their measured concentrations, respectively. The highest OP doses and the excess lifetime carcinogenic risk (ELCR) were found in the head airway (>70 %). However, the size distributions of OP deposition and ELCR in the respiratory tract were different, with 63.9 % and 49.4 % of deposited ELCR and OP, respectively, coming from PM2.5. Therefore, attention must be paid to coarse particles from non-exhaust emissions and road dust resuspension.


Assuntos
Poluentes Atmosféricos , Humanos , Poluentes Atmosféricos/análise , Tamanho da Partícula , Água , Monitoramento Ambiental , Material Particulado/análise , Oxirredução , Estresse Oxidativo
2.
Sci Total Environ ; 844: 157100, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35779725

RESUMO

Aerosol element solubility is essential to evaluate the damage to the environment and human health. In this work, the size distribution of total and soluble elements in eight particle size ranges with diameter <0.25, 0.25-0.44, 0.44-1.0, 1.0-1.4, 1.4-2.5, 2.5-10, 10-16 and >16 µm was investigated in Xiamen Island, southeast China from March 2018 to June 2020. The results showed that both total and soluble elements exhibited significant size dependence without obvious seasonal variations, and their relative contributions to PM1 mass were much lower than in particles larger than 1 µm. The correlations between some elements in soluble fraction were quite different from those in total fraction and the correlations also varied with particle size due to their different solubility. The solubility of Al, Fe, Ag and Cr was relatively low compared with other elements. Moreover, the solubility of Na, Mg, Ca, Mn and Ag was less dependent on particle size while Al, Fe and other trace elements exhibited the highest solubility in PM1 and the lowest in PM>10. Overall, the solubility of elements is primarily a function of aerosol origin and size. The carcinogenic risks of metal exposure via inhalation for children (3.31 × 10-6) and adults (4.42 × 10-6) were slightly higher than the guideline of cancer risk with >60 % from V. As for non-carcinogenic risk, the hazard index values for children and adults were 1.59 and 0.53, respectively, with Mn, V and Ni together accounting for >85 % of the risk. >85 % of the size-dependent dry deposition fluxes of the selected soluble elements over the Xiamen Bay were contributed by particles larger than 10 µm due to their high deposition velocities. The atmospheric inputs of bioavailable Fe and Cu to the sea exceeded the required amounts relative to inorganic nitrogen to meet the growth of phytoplankton.


Assuntos
Aerossóis , Poluentes Atmosféricos , Oligoelementos , Adulto , Poluentes Atmosféricos/análise , Carcinógenos , Criança , China , Monitoramento Ambiental/métodos , Humanos , Tamanho da Partícula , Solubilidade , Oligoelementos/análise
3.
J Atmos Chem ; 79(1): 17-38, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34658469

RESUMO

Size-segregated aerosol particles were collected using a high volume MOUDI sampler at a coastal urban site in Xiamen Bay, China, from March 2018 to June 2020 to examine the seasonal characteristics of aerosol and water-soluble inorganic ions (WSIIs) and the dry deposition of nitrogen species. During the study period, the annual average concentrations of PM1, PM2.5, PM10, and TSP were 14.8 ± 5.6, 21.1 ± 9.0, 35.4 ± 14.2 µg m-3, and 45.2 ± 21.3 µg m-3, respectively. The seasonal variations of aerosol concentrations were impacted by the monsoon with the lowest value in summer and the higher values in other seasons. For WSIIs, the annual average concentrations were 6.3 ± 3.3, 2.1 ± 1.2, 3.3 ± 1.5, and 1.6 ± 0.8 µg m-3 in PM1, PM1-2.5, PM2.5-10, and PM>10, respectively. In addition, pronounced seasonal variations of WSIIs in PM1 and PM1-2.5 were observed, with the highest concentration in spring-winter and the lowest in summer. The size distribution showed that SO4 2-, NH4 + and K+ were consistently present in the submicron particles while Ca2+, Mg2+, Na+ and Cl- mainly accumulated in the size range of 2.5-10 µm, reflecting their different dominant sources. In spring, fall and winter, a bimodal distribution of NO3 - was observed with one peak at 2.5-10 µm and another peak at 0.44-1 µm. In summer, however, the fine mode peak disappeared, likely due to the unfavorable conditions for the formation of NH4NO3. For NH4 + and SO4 2-, their dominant peak at 0.25-0.44 µm in summer and fall shifted to 0.44-1 µm in spring and winter. Although the concentration of NO3-N was lower than NH4-N, the dry deposition flux of NO3-N (35.77 ± 24.49 µmol N m-2 d-1) was much higher than that of NH4-N (10.95 ± 11.89 µmol N m-2 d-1), mainly due to the larger deposition velocities of NO3-N. The contribution of sea-salt particles to the total particulate inorganic N deposition was estimated to be 23.9-52.8%. Dry deposition of particulate inorganic N accounted for 0.95% of other terrestrial N influxes. The annual total N deposition can create a new productivity of 3.55 mgC m-2 d-1, accounting for 1.3-4.7% of the primary productivity in Xiamen Bay. In light of these results, atmospheric N deposition could have a significant influence on biogeochemistry cycle of nutrients with respect to projected increase of anthropogenic emissions from mobile sources in coastal region. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10874-021-09427-8.

4.
Environ Sci Pollut Res Int ; 28(32): 44565-44579, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33852116

RESUMO

Size-fractionated samples were collected at five coastal urban sites in Fujian Province, southeast China, in 2016 and 2017 to determine the trace elements using ICP-MS. Ca, Fe, Al, Mg, and K were the most abundant elements among the studied elements in TSP, much higher than those of heavy metals. The annual mean concentrations of Pb, As, V, Ni, Cd, and Mn were within the acceptable limits of the World Health Organization and the Ministry of Ecology and Environment of China while Cr(VI) exceeded the limits. Most elements exhibited clear seasonal patterns with maxima over the cold season and minima over the warm season. The spatial variabilities in concentrations of the measured elements were not significant except Ni and V. However, the size distribution pattern of each element was quite similar across the region. Characteristic size distributions of elements allowed identification of three main groups: (a) unimodal distribution in the coarse fraction for Ca, Al, Mg, and Ba; (b) unimodal distribution in the fine fraction for Pb, Se, As, Ag, V, Ni, Zn, and Cd; and (c) bimodal or multimodal distribution for Fe, Mn, Cr, K, and Cu. The combination of the size-fractionated concentrations, enrichment factors, correlation coefficients, and factor analysis offered the identification of mixed sources such as vehicular exhaust and wear, heavy fuel oil combustion, and resuspension of road dust. Non-carcinogenic health risks associated with inhalable exposure to airborne metals were higher than the safety threshold (hazard index > 1) across the region, suggesting non-carcinogenic health risks via inhalation. Mn, V, and Ni contributed 74-83% of the total non-carcinogenic risk. The assessment investigation of carcinogenic health risks revealed V and Cr(VI) as elements with the largest carcinogenic risks, accounting for more than 95% of the overall inhalation risk. Nevertheless, the carcinogenic risks for children and adults were between 10-6 and 10-4, within the range considered acceptable by the US EPA. In terms of the size-fractionated risk, PM2.5 contributed 43-50% and 39-44% of the total non-carcinogenic and carcinogenic risks, respectively, indicating the potential health hazard of coarse particle-bound toxic metals was not negligible.


Assuntos
Monitoramento Ambiental , Metais Pesados , Adulto , Criança , China , Cidades , Poeira/análise , Humanos , Metais Pesados/análise , Medição de Risco
5.
J Air Waste Manag Assoc ; 71(8): 995-1012, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33835900

RESUMO

Fine particle (PM2.5) exposure is a public health issue affecting millions of people worldwide. In New York State, significant emission reductions occurred during the past decades due to fuel switching, increased renewable energy, and transformations in buildings and transportation. Between 2002 and 2018, anthropogenic emissions of CO, NOx, SO2, VOCs, and primary PM2.5 declined by 58%, 61%, 89%, 47%, and 29%, respectively, in New York and three adjoining states. Ambient PM2.5 mass concentrations decreased but contributions of source types to changes in PM2.5 elemental carbon (EC) and organic carbon (OC) are incompletely understood. Receptor modeling was used to estimate changing source contributions to EC and OC in New York City (NYC) between 2007 and 2019. Source identification was facilitated by incorporating measurements of CO, NO, NO2, O3, SO2, and speciated hydrocarbons (1,3-butadiene, n-butane, isobutane, n-pentane, isopentane, isoprene, benzene, toluene, xylenes, acetaldehyde, and formaldehyde). Hydrocarbon species identified mobile-source emissions, evaporative emissions, biogenics, and photochemical secondary organic aerosol. At three study locations, predicted reductions of TC (OC + EC) summed over all source types were 1.3 ± 0.2 µg m-3, compared with a measured TC reduction of 1.5 ± 0.2 µg m-3. Declining sulfate concentrations and cleaner mobile sources together reduced the predicted average TC by a combined 1 µg m-3. Smaller changes occurred in other source contributions, e.g., 0.15 ± 0.01 µg m-3 reduction likely in response to NYC regulations related to heating fuel oil. Biomass burning PM2.5 increased between 2007 and 2011, then declined between 2015 and 2019. Reductions contrast with a non-significant increase of 0.05 µg m-3 in photochemical TC. Further opportunities to decrease PM2.5 concentrations include wood burning and photochemical-related OC. Continued temporal analysis and source apportionment will be needed to track changes in air quality and source contributions as jurisdictions expand renewable energy and energy efficiency goals.Implications: Large emission reductions that occurred in the eastern U.S. between 2002 and 2019 lowered average fine particle concentrations in New York City by a factor of two. Secondary organic aerosol concentrations declined as sulfate decreased but increased non-significantly with rising ozone. Cleaner mobile-source emissions lowered elemental and organic carbon concentrations. Opportunities for further reductions of PM2.5 concentrations include biomass burning and photochemical secondary aerosol.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Humanos , Cidade de Nova Iorque , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
6.
Environ Pollut ; 270: 116299, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33360597

RESUMO

The co-occurrence of enhancement in aerosol concentration, temperatures, and ozone mixing ratio was observed between June 29 and July 4, 2018 (enhanced period, EP) on Long Island (LI) and the greater NYC metropolitan area during part of the 2018 Long Island Sound Tropospheric Ozone Study (LISTOS). Two aerosol formation pathways were identified during the EP, the first being the condensation of semi- and intermediate volatility oxidation products of anthropogenic volatile organic compounds (AVOCs) under stagnant synoptic flow conditions, high temperatures and afternoon sea-breeze circulation. While this first pathway was prevalent, the most abundant organic aerosol factor was less oxidized oxygenated organic aerosol or LO-OOA. The second formation pathway occurred during a period of more persistent (synoptic) on-shore flow transporting more aged aerosol which consisted of an internal mixture of more oxidized oxygenated organic aerosol (MO-OOA), methanesulfonic acid (MSA) and sulfate. It was estimated that 35% of the sulfate observed during the mature period (an average of about 1.2 µg m-3) originated from oceanic dimethyl sulfide (DMS) emissions. These two formation pathways helped elucidate the sources of fine particle pollution, highlighted the interaction between human emissions and natural DMS emission, and will help our understanding of pollution affecting other urban areas adjacent to large bodies of water during hot and stagnant periods.


Assuntos
Poluentes Atmosféricos , Ozônio , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Humanos , Ozônio/análise , Material Particulado/análise
7.
J Air Waste Manag Assoc ; 71(1): 70-80, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044123

RESUMO

Near-road measurements in Rochester, NY with a Portable Air Quality Monitoring System indicate a significant plume control of PM2.5 black carbon (BC) concentrations. This study evaluates the performance of two portable air quality enclosures deployed at collocated research sites to determine their accuracy and usefulness in field deployments, and specifically in pollution plume analysis. One system deployed collocated sensors for measurement of particulate matter mass concentration (Thermo pDR 1500 against Tapered Element Oscillating Microbalance (TEOM) measurement) and the second system deployed sensors for measurement of black carbon (Magee AE33 aethalometer and Brechtel Tricolor Absorption Photometer) in ambient and near-road locations in Rochester, New York, respectively. While the optical PM2.5 sensors tended to be biased in their determination of concentration by ~15%, they followed changes and trends in concentration very well. The black carbon sensors in the portable systems agreed very well with each other and with the collocated sensor. As a case study to determine the contribution from statistically significant short-lived excursions of pollutant concentration, Morlet wavelet analysis was performed on data from the portable system sensors. Black carbon was found to be strongly influenced by plume behavior with significant plume excursions representing just over 12% of all data points and contributing on average 1 µg/m3 of black carbon above ambient concentrations. Implications: This paper first evaluates two air pollutant monitoring enclosures with wide applicability including near-road detection of pollutants. Then, we present a novel method to designate isolate statistically significant excursions in air pollution concentration which can be used to determine the impact of pollutant plumes as observed in PM and black carbon behavior near road.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Fuligem
8.
Environ Sci Pollut Res Int ; 26(25): 25596-25608, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31267394

RESUMO

Since NH3 is a significant precursor to ammonium in PM2.5 and contributes significantly to atmospheric nitrogen deposition but largely remains unregulated in China, the insight into the source of NH3 emissions by the isotopic investigation is important in controlling NH3 emissions. In this study, atmospheric concentrations of NH3 and water-soluble ion composition in PM2.5 as well as nitrogen isotope ratios in NH4+ (δ15N-NH4+) in Xiamen, China, were measured. Results showed that average NH3 concentration for the five sites in Xiamen was 7.9 µg m-3 with distinct higher values in the warm season and lower values in the cold season, and PM2.5 concentration for the two sites (urban and suburban) was 59.2 µg m-3 with lowest values in summer. In the PM2.5, NH4+ concentrations were much lower than NH3 and showed a stronger positive correlation with NO3- than that with SO42- suggesting the formation of NH4NO3 and equilibrium between NH3 and NH4+. Although the concentrations of NH3 at the urban site were significantly higher than those at the suburban site, no significant spatial difference in NH4+ and δ15N-NH4+ was obtained. The distinct heavier δ15N-NH4+ values in summer than in other seasons correlated well with the equilibrium isotopic effects between NH3 and NH4+ which depend on temperature. The initial δ15N-NH3 values were in the range of waste treatment (- 25.42‰) and fossil fuel combustion (- 2.5‰) after accounting for the isotope fractionation. The stable isotope mixing model showed that fossil fuel-related NH3 emissions (fossil fuel combustion and NH3 slip) contributed more than 70% to aerosol NH4+. This finding suggested that the reduction of NH3 emissions from urban transportation and coal combustion should be a priority in the abatement of PM2.5 pollution in Xiamen.


Assuntos
Aerossóis/análise , Amônia/análise , Compostos de Amônio/análise , Carvão Mineral/análise , Monitoramento Ambiental/métodos , Isótopos de Nitrogênio/análise , Nitrogênio/análise , Poluentes Atmosféricos/análise , China , Combustíveis Fósseis , Estações do Ano
9.
J Air Waste Manag Assoc ; 59(3): 293-309, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19320268

RESUMO

A research site for atmospheric chemistry and air pollution measurements was established at Pinnacle State Park in Addison, NY, in 1995. This paper presents an overview of the site characteristics and measurement program, as well as monthly average concentrations for many of the trace gas and aerosol pollutants over the full measurement period. Monthly averaged ozone concentrations range from values as low as 15 parts per billion (ppb) during cold-season months, to values approaching 50 ppb during some spring and summer months. Sulfur dioxide (SO2), oxides of nitrogen (NOx), and reactive odd nitrogen (NOy) all show distinct seasonal variation, with summertime monthly averages as low as 1-3 ppb, and wintertime monthly averages from 6-12 ppb. The variation in carbon monoxide (CO) is much smaller, with minimums of approximately 150 ppb and maximums only rarely exceeding 250 ppb. Data for three hydrocarbon species--propane, benzene, and isoprene--are presented. Propane and benzene show higher monthly averaged concentrations in the winter and lower values in the summer, with values ranging over a factor of 4-5. Isoprene, on the other hand has much higher values during the summer season, sometimes a factor of 10 or more greater than concentrations measured in the winter. Monthly averaged plots for fine particulate matter (PM2.5) beginning in 1999 show a robust summer maximum and winter minimum, and roughly a factor of two difference between the two. An empirical measure of ozone production using the correlation of hour-averaged ozone and NOy data illustrates relatively robust ozone production during some, but not all, summertime months over the time period. Also, an analysis of the frequency distribution of the hours of maximum ozone concentration shows a strong mid-afternoon peak, as expected, but also a prominent secondary maximum centered around midnight. The secondary peak is interpreted as ozone transported from ozone-producing areas to the west, including Buffalo, Cleveland, Pittsburgh, and the Ohio Valley. Finally, SO2 concentrations as a function of wind direction clearly indicate maximum impacts when the winds are out of the south (Pittsburgh and Philadelphia), with a secondary peak when the winds are from the north-northeast, consistent with the locations of major SO2 emission sources in the region.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , New York , Tamanho da Partícula , Estações do Ano , Fatores de Tempo , Vento
10.
Environ Sci Technol ; 41(24): 8412-9, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18200872

RESUMO

Six different measurement methods (and seven instruments) for the measurement of gaseous ammonia at low part-per-billion levels were compared simultaneously in a laboratory setting. The instruments were the tunable diode laser (TDL) absorption spectrometer, the wet scrubbing long-path absorption photometer (LOPAP), the wet effusive diffusion denuder (WEDD), the ion mobility spectrometer (IMS), the Nitrolux laser acousto-optical absorption analyzer, and a modified chemiluminescence analyzer. With the exception of the modified chemiluminescence analyzer, the instruments performed well and, understable calibration conditions, generally agreed to within about 25% of the expected calibration value. Instrument time response is shown to be sensitive to measurement history as well as the sample handling materials and is shortest for the TDL. The IMS and Nitrolux are commercial instruments used without modification from the manufacturer. These two instruments have significantly slower time response than the TDL (especially in the case of the Nitrolux) and exhibited measurement biases of approximately +25% (IMS) and -25% (Nitrolux). The LOPAP and WEDD instruments, both research instruments using wet chemical methods, performed well in the calibration tests in terms of the absolute accuracy of measured concentrations, but the WEDD instrument suffered from significantly slower time response than the LOPAP.


Assuntos
Amônia/análise , Gases/análise , Difusão , Luminescência , Sensibilidade e Especificidade
11.
J Air Waste Manag Assoc ; 56(4): 372-83, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16681203

RESUMO

Field evaluations and comparisons of continuous fine particulate matter (PM2,5) mass measurement technologies at an urban and a rural site in New York state are performed. The continuous measurement technologies include the filter dynamics measurement system (FDMS) tapered element oscillating microbalance (TEOM) monitor, the stand-alone TEOM monitor (without the FDMS), and the beta attenuation monitor (BAM). These continuous measurement methods are also compared with 24-hr integrated filters collected and analyzed under the Federal Reference Method (FRM) protocol. The measurement sites are New York City (the borough of Queens) and Addison, a rural area of southwestern New York state. New York City data comparisons between the FDMS TEOM, BAM, and FRM are examined for bias and seasonality during a 2-yr period. Data comparisons for the FDMS TEOM and FRM from the Addison location are examined for the same 2-yr period. The BAM and FDMS measurements at Queens are highly correlated with each other and the FRM. The BAM and FDMS are very similar to each other in magnitude, and both are approximately 25% higher than the FRM filter measurements at this site. The FDMS at Addison measures approximately 9% more mass than the FRM. Mass reconstructions using the speciation trends network filter data are examined to provide insight as to the contribution of volatile species of PM2.5 in the FDMS mass measurement and the fraction that is likely lost in the FRM mass measurement. The reconstructed mass at Queens is systematically lower than the FDMS by approximately 10%.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Filtração , New York , Cidade de Nova Iorque , Estações do Ano
12.
J Air Waste Manag Assoc ; 54(10): 1254-63, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15540578

RESUMO

Laboratory tests with generated aerosols were conducted to test the efficacy of two recent design modifications to the well-established tapered element oscillating microbalance (TEOM) continuous particulate matter (PM) mass monitor. The two systems tested were the sample equilibration system-equipped TEOM monitor operating at 30 degrees C, which uses a Nafion dryer as part of the sample inlet, and the differential TEOM monitor, which adds a switched electrostatic precipitator and uses a self-referencing algorithm to determine "true PM mass." Test aerosols included ammonium sulfate, ammonium nitrate, sodium chloride, copper (II) sulfate, and mixed aerosols. Aerosols were generated with an atomizer or a vibrating orifice generator and were equilibrated in a 450-L slow flow chamber before being sampled. Relative humidity in the chamber was varied between 10 and 90%, and step changes in humidity were executed while generating aerosol to test the response of the instruments. The sample equilibration system-equipped TEOM monitor does reduce, but not totally eliminate, the sensitivity of the TEOM mass monitor to changes in humidity. The differential TEOM monitor gives every indication of being a very robust technique for the continuous real-time measurement of ambient aerosol mass, even in the presence of semi-volatile particles and condensable gases.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/instrumentação , Modelos Teóricos , Movimentos do Ar , Desenho de Equipamento , Tamanho da Partícula
13.
J Air Waste Manag Assoc ; 54(10): 1264-80, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15540579

RESUMO

Long-term field comparisons of continuous and integrated filter measurements of mass concentrations of particulate matter (PM) with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5) were performed at rural and urban sites in New York State. Two versions of the continuous tapered element oscillating microbalance (TEOM) mass monitor are deployed at each site, in addition to Federal Reference Method filter samplers. Data are grouped into monthly averages to retain and demonstrate seasonal differences. Strong seasonal dependence is observed-the TEOM monitors with the heated sensors are biased systematically low with respect to the Federal Reference Method measurements during the cold season. For the rural site, the average bias for the sample equilibration system (SES)-equipped and standard TEOM monitors is 14 and 24%, respectively. At this location, the TEOM monitor measurements were biased low for all 34 months. For the urban site, the average bias for the SES and standard TEOM monitors is 8 and 18%, respectively. At this location, the TEOM monitor measurements are as likely to be biased high as low during the warm-season months. The hour averaged data from the two versions of the TEOM monitor are also compared, and also indicate that the SES-equipped version of the TEOM monitor captures 7-11% more PM2.5 mass at these locations.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/instrumentação , Cidades , New York , Tamanho da Partícula , Estações do Ano , Sensibilidade e Especificidade
14.
J Air Waste Manag Assoc ; 54(9): 1040-60, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15468658

RESUMO

Several collocated semicontinuous instruments measuring particulate matter with particle sizes < or =2.5 microm (PM2.5) sulfate (SO4(2-)) and nitrate (NO3-) were intercompared during two intensive field campaigns as part of the PM2.5 Technology Assessment and Characterization Study. The summer 2001 urban campaign in Queens, NY, and the summer 2002 rural campaign in upstate New York (Whiteface Mountain) hosted an operation of an Aerosol Mass Spectrometer, Ambient Particulate Sulfate and Nitrate Monitors, a Continuous Ambient Sulfate Monitor, and a Particle-Into-Liquid Sampler with Ion Chromatographs (PILS-IC). These instruments provided near real-time particulate SO4(2-) and NO3- mass concentration data, allowing the study of particulate SO4(2-)/NO3- diurnal patterns and detection of short-term events. Typical particulate SO4(2-) concentrations were comparable at both sites (ranging from 0 to 20 microg/m3), while ambient urban particulate NO3- concentrations ranged from 0 to 11 microg/m3 and rural NO3- concentration was typically less than 1 microg/m3. Results of the intercomparisons of the semicontinuous measurements are presented, as are results of the comparisons between the semicontinuous and time-integrated filter-based measurements. The comparisons at both sites, in most cases, indicated similar performance characteristics. In addition, charge balance calculations, based on major soluble ionic components of atmospheric aerosol from the PILS-IC and the filter measurements, indicated slightly acidic aerosol at both locations.


Assuntos
Poluentes Atmosféricos/análise , Nitratos/análise , Sulfatos/análise , Cidades , Monitoramento Ambiental , New York , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...