Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geophys Res Lett ; 47(19): e2020GL089362, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33380756

RESUMO

Energetic neutral atoms (ENAs) created by charge-exchange of ions with the Earth's hydrogen exosphere near the subsolar magnetopause yield information on the distribution of plasma in the outer magnetosphere and magnetosheath. ENA observations from the Interstellar Boundary Explorer (IBEX) are used to image magnetosheath plasma and, for the first time, low-energy magnetospheric plasma near the magnetopause. These images show that magnetosheath plasma is distributed fairly evenly near the subsolar magnetopause; however, low-energy magnetospheric plasma is not distributed evenly in the outer magnetosphere. Simultaneous images and in situ observations from the Magnetospheric Multiscale (MMS) spacecraft from November 2015 (during the solar cycle declining phase) are used to derive the exospheric density. The ~11-17 cm-3 density at 10 RE is similar to that obtained previously for solar minimum. Thus, these combined results indicate that the exospheric density 10 RE from the Earth may have a weak dependence on solar cycle.

2.
Geophys Res Lett ; 47(16): e2020GL088188, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-33132458

RESUMO

The Interstellar Boundary Explorer (IBEX) mission provides global energetic neutral atom (ENA) observations from the heliosphere and the Earth's magnetosphere, including spatial, temporal, and energy information. IBEX views the magnetosphere from the sides and almost always perpendicular to noon-midnight plane. We report the first ENA images of the energization process in the Earth's ion foreshock and magnetosheath regions. We show ENA flux and spectral images of the dayside magnetosphere with significant energization of ENA plasma sources (above ~2.7 keV) in the region magnetically connected to the Earth's bow shock (BS) in its quasi-parallel configuration of the interplanetary magnetic field (IMF). We also show that the ion energization increases gradually with decreasing IMF-BS angle, suggesting more efficient suprathermal ion acceleration deeper in the quasi-parallel foreshock.

3.
Nature ; 576(7786): 223-227, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802005

RESUMO

NASA's Parker Solar Probe mission1 recently plunged through the inner heliosphere of the Sun to its perihelia, about 24 million kilometres from the Sun. Previous studies farther from the Sun (performed mostly at a distance of 1 astronomical unit) indicate that solar energetic particles are accelerated from a few kiloelectronvolts up to near-relativistic energies via at least two processes: 'impulsive' events, which are usually associated with magnetic reconnection in solar flares and are typically enriched in electrons, helium-3 and heavier ions2, and 'gradual' events3,4, which are typically associated with large coronal-mass-ejection-driven shocks and compressions moving through the corona and inner solar wind and are the dominant source of protons with energies between 1 and 10 megaelectronvolts. However, some events show aspects of both processes and the electron-proton ratio is not bimodally distributed, as would be expected if there were only two possible processes5. These processes have been very difficult to resolve from prior observations, owing to the various transport effects that affect the energetic particle population en route to more distant spacecraft6. Here we report observations of the near-Sun energetic particle radiation environment over the first two orbits of the probe. We find a variety of energetic particle events accelerated both locally and remotely including by corotating interaction regions, impulsive events driven by acceleration near the Sun, and an event related to a coronal mass ejection. We provide direct observations of the energetic particle radiation environment in the region just above the corona of the Sun and directly explore the physics of particle acceleration and transport.

4.
Nature ; 576(7786): 228-231, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802006

RESUMO

The prediction of a supersonic solar wind1 was first confirmed by spacecraft near Earth2,3 and later by spacecraft at heliocentric distances as small as 62 solar radii4. These missions showed that plasma accelerates as it emerges from the corona, aided by unidentified processes that transport energy outwards from the Sun before depositing it in the wind. Alfvénic fluctuations are a promising candidate for such a process because they are seen in the corona and solar wind and contain considerable energy5-7. Magnetic tension forces the corona to co-rotate with the Sun, but any residual rotation far from the Sun reported until now has been much smaller than the amplitude of waves and deflections from interacting wind streams8. Here we report observations of solar-wind plasma at heliocentric distances of about 35 solar radii9-11, well within the distance at which stream interactions become important. We find that Alfvén waves organize into structured velocity spikes with duration of up to minutes, which are associated with propagating S-like bends in the magnetic-field lines. We detect an increasing rotational component to the flow velocity of the solar wind around the Sun, peaking at 35 to 50 kilometres per second-considerably above the amplitude of the waves. These flows exceed classical velocity predictions of a few kilometres per second, challenging models of circulation in the corona and calling into question our understanding of how stars lose angular momentum and spin down as they age12-14.

5.
Astrophys J ; 876(2)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31359881

RESUMO

The leading hypothesis for the origin of the Interstellar Boundary Explorer (IBEX) "ribbon" of enhanced energetic neutral atoms (ENAs) from the outer heliosphere is the secondary ENA mechanism, whereby neutralized solar wind ions escape the heliosphere and, after several charge-exchange processes, may propagate back toward Earth primarily in directions perpendicular to the local interstellar magnetic field (ISMF). However, the physical processes governing the parent protons outside of the heliopause are still unconstrained. In this study, we compute the "spatial retention" model proposed by Schwadron & McComas (2013) in a 3D simulated heliosphere. In their model, pickup ions outside the heliopause that originate from the neutral solar wind are spatially-retained in a region of space via strong pitch angle scattering before becoming ENAs. We find that the ribbon's intensity and shape can vary greatly depending on the pitch angle scattering rate both inside and outside the spatial retention region, potentially contributing to the globally distributed flux. The draping of the ISMF around the heliopause creates an asymmetry in the average distance to the ribbon's source as well as an asymmetry in the ribbon's shape, i.e., radial cross section of ENA flux through the circular ribbon. The spatial retention model adds an additional asymmetry to the ribbon's shape due to the enhancement of ions in the retention region close to the heliopause. Finally, we demonstrate how the ribbon's structure observed at 1 au is affected by different instrument capabilities, and how the Interstellar Mapping and Acceleration Probe (IMAP) may observe the ribbon.

6.
Life Sci Space Res (Amst) ; 17: 32-39, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29753411

RESUMO

Protecting spacecraft crews from energetic space radiations that pose both chronic and acute health risks is a critical issue for future missions beyond low Earth orbit (LEO). Chronic health risks are possible from both galactic cosmic ray and solar energetic particle event (SPE) exposures. However, SPE exposures also can pose significant short term risks including, if dose levels are high enough, acute radiation syndrome effects that can be mission- or life-threatening. In order to address the reduction of short term risks to spaceflight crews from SPEs, we have developed recommendations to NASA for a design-standard SPE to be used as the basis for evaluating the adequacy of proposed radiation shelters for cislunar missions beyond LEO. Four SPE protection requirements for habitats are proposed: (1) a blood-forming-organ limit of 250 mGy-equivalent for the design SPE; (2) a design reference SPE environment equivalent to the sum of the proton spectra during the October 1989 event series; (3) any necessary assembly of the protection system must be completed within 30 min of event onset; and (4) space protection systems must be designed to ensure that astronaut radiation exposures follow the ALARA (As Low As Reasonably Achievable) principle.


Assuntos
Radiação Cósmica/efeitos adversos , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Atividade Solar , Voo Espacial/métodos , Planeta Terra , Humanos
7.
Science ; 343(6174): 988-90, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24526313

RESUMO

Observations with the Interstellar Boundary Explorer (IBEX) have shown enhanced energetic neutral atom (ENA) emission from a narrow, circular ribbon likely centered on the direction of the local interstellar medium (LISM) magnetic field. Here, we show that recent determinations of the local interstellar velocity, based on interstellar atom measurements with IBEX, are consistent with the interstellar modulation of high-energy (tera-electron volts, TeV) cosmic rays and diffusive propagation from supernova sources revealed in global anisotropy maps of ground-based high-energy cosmic-ray observatories (Milagro, Asγ, and IceCube). Establishing a consistent local interstellar magnetic field direction using IBEX ENAs at hundreds to thousands of eV and galactic cosmic rays at tens of TeV has wide-ranging implications for the structure of our heliosphere and its interactions with the LISM, which is particularly important at the time when the Voyager spacecraft are leaving our heliosphere.

8.
Science ; 341(6150): 1080-2, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-24009386

RESUMO

The journey of the Sun through the dynamically active local interstellar medium creates an evolving heliosphere environment. This motion drives a wind of interstellar material through the heliosphere that has been measured with Earth-orbiting and interplanetary spacecraft for 40 years. Recent results obtained by NASA's Interstellar Boundary Explorer mission during 2009-2010 suggest that neutral interstellar atoms flow into the solar system from a different direction than found previously. These prior measurements represent data collected from Ulysses and other spacecraft during 1992-2002 and a variety of older measurements acquired during 1972-1978. Consideration of all data types and their published results and uncertainties, over the three epochs of observations, indicates that the trend for the interstellar flow ecliptic longitude to increase linearly with time is statistically significant.

9.
Science ; 336(6086): 1291-3, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22582011

RESUMO

As the Sun moves through the local interstellar medium, its supersonic, ionized solar wind carves out a cavity called the heliosphere. Recent observations from the Interstellar Boundary Explorer (IBEX) spacecraft show that the relative motion of the Sun with respect to the interstellar medium is slower and in a somewhat different direction than previously thought. Here, we provide combined consensus values for this velocity vector and show that they have important implications for the global interstellar interaction. In particular, the velocity is almost certainly slower than the fast magnetosonic speed, with no bow shock forming ahead of the heliosphere, as was widely expected in the past.

10.
Rev Sci Instrum ; 81(11): 114501, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21133487

RESUMO

Electrostatic analyzers (ESAs), in various forms, are used to measure plasma in a range of applications. In this article, we describe how ions reflect from the interior surfaces of an ESA, the detection of which constitutes a fundamentally nonideal response of ESAs. We demonstrate this effect by comparing laboratory data from a real ESA-based space instrument, the Solar Wind Around Pluto (SWAP) instrument, aboard the NASA New Horizons spacecraft, to results from a model based on quantum mechanical simulations of particles reflected from the instrument's surfaces combined with simulations of particle trajectories through the instrument's applied electrostatic fields. Thus, we show, for the first time, how reflected ions in ESAs lead to nonideal effects that have important implications for understanding the data returned by these instruments, as well as for designing new low-background ESA-based instruments. Specifically, we show that the response of SWAP widens considerably below a level of 10(-3) of the peak response. Thus, a direct measurement of a plasma distribution with SWAP will have an energy-dependent background on the order of ≤10(-3) of the peak of the signal due to that distribution. We predict that this order of magnitude estimate for the background applies to a large number of ESA-based instruments because ESAs operate using a common principle. However, the exact shape of the energy-dependent response will be different for different instruments. The principle of operation is that ions outside the ideal range of energy-per-charge are deflected into the walls of the ESA. Therefore, we propose that a new design paradigm is necessary to mitigate the effect of ion reflections and thus accurately and directly measure the energy spectrum of a plasma using ESAs. In this article, we build a framework for minimizing the effect of ion reflections in the design of new ESAs. Through the use of existing computer simulation software, a design team can use our method to quantify the amount of reflections in their instrument and iteratively change design parameters before fabrication, conserving resources. A possible direction for the new design paradigm is having nonsolid walls of the ESA, already used in some applications.

11.
Science ; 326(5955): 966-8, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19833915

RESUMO

Simulations of energetic neutral atom (ENA) maps predict flux magnitudes that are, in some cases, similar to those observed by the Interstellar Boundary Explorer (IBEX) spacecraft, but they miss the ribbon. Our model of the heliosphere indicates that the local interstellar medium (LISM) magnetic field (B(LISM)) is transverse to the line of sight (LOS) along the ribbon, suggesting that the ribbon may carry its imprint. The force-per-unit area on the heliopause from field line draping and the LISM ram pressure is comparable with the ribbon pressure if the LOS approximately 30 to 60 astronomical units and B(LISM) approximately 2.5 microgauss. Although various models have advantages in accounting for some of the observations, no model can explain all the dominant features, which probably requires a substantial change in our understanding of the processes that shape our heliosphere.

12.
Science ; 326(5955): 964-6, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19833918

RESUMO

The Interstellar Boundary Explorer (IBEX) has obtained all-sky images of energetic neutral atoms emitted from the heliosheath, located between the solar wind termination shock and the local interstellar medium (LISM). These flux maps reveal distinct nonthermal (0.2 to 6 kilo-electron volts) heliosheath proton populations with spectral signatures ordered predominantly by ecliptic latitude. The maps show a globally distributed population of termination-shock-heated protons and a superimposed ribbonlike feature that forms a circular arc in the sky centered on ecliptic coordinate (longitude lambda, latitude beta) = (221 degrees, 39 degrees), probably near the direction of the LISM magnetic field. Over the IBEX energy range, the ribbon's nonthermal ion pressure multiplied by its radial thickness is in the range of 70 to 100 picodynes per square centimeter AU (AU, astronomical unit), which is significantly larger than the 30 to 60 picodynes per square centimeter AU of the globally distributed population.

13.
Science ; 326(5955): 959-62, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19833923

RESUMO

The Sun moves through the local interstellar medium, continuously emitting ionized, supersonic solar wind plasma and carving out a cavity in interstellar space called the heliosphere. The recently launched Interstellar Boundary Explorer (IBEX) spacecraft has completed its first all-sky maps of the interstellar interaction at the edge of the heliosphere by imaging energetic neutral atoms (ENAs) emanating from this region. We found a bright ribbon of ENA emission, unpredicted by prior models or theories, that may be ordered by the local interstellar magnetic field interacting with the heliosphere. This ribbon is superposed on globally distributed flux variations ordered by both the solar wind structure and the direction of motion through the interstellar medium. Our results indicate that the external galactic environment strongly imprints the heliosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...