Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Appl Spectrosc ; : 37028241258109, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38881172

RESUMO

Ongoing technological advancements in the field of mid-infrared (MIR) spectroscopy continuously yield novel sensing modalities, offering capabilities beyond traditional techniques like Fourier transform infrared spectroscopy (FT-IR). One such advancement is MIR dispersion spectroscopy, utilizing a tunable quantum cascade laser and Mach-Zehnder interferometer for liquid-phase analysis. Our study assesses the performance of a custom MIR dispersion spectrometer at its current development stage, benchmarks its performance against FT-IR, and validates its potential for time-resolved chemical reaction monitoring. Unlike conventional methods of IR spectroscopy measuring molecular absorptions using intensity attenuation, our method detects refractive index changes (phase shifts) down to a level of 6.1 × 10-7 refractive index units (RIU). This results in 1.5 times better sensitivity with a sevenfold increase in analytical path length, yielding heightened robustness for the analysis of liquids compared to FT-IR. As a case study, we monitor the catalytic activity of invertase with sucrose, observing the formation of resultant monosaccharides and their progression toward thermodynamic equilibrium. Anomalous refractive index spectra of reaction mixtures, with substrate concentrations ranging from 2.5 to 25 g/L, are recorded, and analyzed at various temperatures, yielding Michaelis-Menten kinetics findings comparable to the literature. Additionally, the first-time application of two-dimensional correlation spectroscopy on the recorded dynamic dispersion spectra correctly identifies the mutarotation of reaction products (glucose and fructose). The results demonstrate high precision and sensitivity in investigating complex time-dependent chemical reactions via broadband refractive index changes.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124228, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38593537

RESUMO

High spectral power density provided by advances in external cavity quantum cascade lasers (EC-QCL) have enabled increased transmission path lengths in mid-infrared (mid-IR) spectroscopy for more sensitive measurement of proteins in aqueous solutions. These extended path lengths also facilitate flow through measurements by avoiding congestion of the flow cell by protein aggregates. Despite the advantages presented by laser-based mid-IR spectroscopy of proteins, extraction of secondary structure information from spectra, especially in the presence of complex multi-component matrices with overlapping spectral features, remains an impediment that requires fine tuning of evaluation algorithms (e.g., band fitting, interpretation of second derivative spectra etc.). In this work, the use of multivariate curve resolution alternating least squares (MCR-ALS) for the analysis of a chemical de- and renaturation experiment has been demonstrated, since this technique offers the second-order advantage of extracting spectral signatures and concentration profiles even in the presence of unknown, uncalibrated constituents. Furthermore, we exhibit a partial least squares regression (PLSR) based subtraction of matrix component spectra prior to MCR-ALS as a method to obtain secondary structure information even in the absence of reference spectra. These approaches are showcased using the online reaction monitoring of the titration of ß-lactoglobulin (ß-LG) in water against the surfactants sodium dodecyl sulfate (SDS) and octaethylene glyol monododecyl ether (C12E8), using a commercially available laser-based IR spectrometer. Results for the automated PLSR correction plus MCR-ALS approach compare favorably to an MCR-ALS standalone approach using initial estimates as well as analysis of secondary structure using data processed with a manual baseline correction. The herein described chemometric approach suggests a way to simplify the challenge of handling complex matrices in protein structure analysis by isolating the background from the protein contributions, prior to analysis via other soft-modelling techniques. Consequently, the findings of this study indicate the suitability of online reaction monitoring through mid-IR spectroscopy combined with chemometric techniques as a potential tool in downstream quality control and process automation.

3.
Front Pediatr ; 11: 1130179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37144153

RESUMO

Background: Human milk (HM) is the ideal source of nutrients for infants. Its composition is highly variable according to the infant's needs. When not enough own mother's milk (OMM) is available, the administration of pasteurized donor human milk (DHM) is considered a suitable alternative for preterm infants. This study protocol describes the NUTRISHIELD clinical study. The main objective of this study is to compare the % weight gain/month in preterm and term infants exclusively receiving either OMM or DHM. Other secondary aims comprise the evaluation of the influence of diet, lifestyle habits, psychological stress, and pasteurization on the milk composition, and how it modulates infant's growth, health, and development. Methods and design: NUTRISHIELD is a prospective mother-infant birth cohort in the Spanish-Mediterranean area including three groups: preterm infants <32 weeks of gestation (i) exclusively receiving (i.e., >80% of total intake) OMM, and (ii) exclusively receiving DHM, and (iii) term infants exclusively receiving OMM, as well as their mothers. Biological samples and nutritional, clinical, and anthropometric characteristics are collected at six time points covering the period from birth and until six months of infant's age. The genotype, metabolome, and microbiota as well as the HM composition are characterized. Portable sensor prototypes for the analysis of HM and urine are benchmarked. Additionally, maternal psychosocial status is measured at the beginning of the study and at month six. Mother-infant postpartum bonding and parental stress are also examined. At six months, infant neurodevelopment scales are applied. Mother's concerns and attitudes to breastfeeding are registered through a specific questionnaire. Discussion: NUTRISHIELD provides an in-depth longitudinal study of the mother-infant-microbiota triad combining multiple biological matrices, newly developed analytical methods, and ad-hoc designed sensor prototypes with a wide range of clinical outcome measures. Data obtained from this study will be used to train a machine-learning algorithm for providing dietary advice to lactating mothers and will be implemented in a user-friendly platform based on a combination of user-provided information and biomarker analysis. A better understanding of the factors affecting milk's composition, together with the health implications for infants plays an important role in developing improved strategies of nutraceutical management in infant care. Clinical trial registration: https://register.clinicaltrials.gov, identifier: NCT05646940.

4.
Anal Chem ; 95(15): 6441-6447, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37010404

RESUMO

Stability of high-concentration protein formulations is considered a major challenge in current biopharmaceutical development. In this work, we introduce laser-based mid-infrared (IR) spectroscopy as a versatile technique to study the effect of protein concentration and presence of sugars on the thermal denaturation of the model protein bovine serum albumin (BSA). Many analytical techniques struggle to characterize the complex structural transition that occurs during protein denaturation. To this end, a commercially available laser-based mid-IR spectrometer equipped with a customized flow cell was employed to record IR spectra of BSA in the temperature range of 25-85 °C. The temperature perturbation induces a conformational change from a native α-helical to an intermolecular ß-sheet secondary structure in BSA. Systematic investigation of the concentration dependence of the α-ß transition temperature between 30 and 90 mg mL-1 shows a trend of decreasing denaturation temperatures at higher BSA concentrations. In-depth chemometric analysis by a multivariate curve resolution-alternating least squares (MCR-ALS) analysis of the spectra, suggested the formation of not one but two intermediates in the denaturation of BSA. Subsequently, the impact of sugars on denaturation temperatures was investigated, revealing both stabilizing (trehalose, sucrose, and mannose) and destabilizing (sucralose) effects, illustrating the applicability of this method as an investigative tool for stabilizers. These results highlight the potential and versatility of laser-based IR spectroscopy for analysis of protein stability at high concentrations and varying conditions.


Assuntos
Soroalbumina Bovina , Açúcares , Espectrofotometria Infravermelho/métodos , Soroalbumina Bovina/química , Desnaturação Proteica , Lasers , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
5.
Methods Mol Biol ; 2617: 209-223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36656527

RESUMO

Infrared (IR) spectroscopy is a widely used technique for evaluation of protein secondary structure. In this chapter, we focus on the application of this analytical technique for analysis of inclusion bodies. After a general introduction to protein analysis by IR spectroscopy, different approaches for spectra acquisition, data processing, and secondary structure evaluation are presented.


Assuntos
Corpos de Inclusão , Proteínas , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectrofotometria Infravermelho , Proteínas/química , Corpos de Inclusão/metabolismo , Estrutura Secundária de Proteína
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 122014, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36323085

RESUMO

Mid-IR dispersion spectroscopy is an attractive, novel approach to liquid phase analysis that extends the possibilities of traditional methods based on the detection of absorption via intensity attenuation. This technique detects inherent refractive index changes (phase shifts) induced by IR light interaction with absorbing matter. In contrast to classic absorption spectroscopy, it provides extended dynamic range, baseline-free detection, constant sensitivity, and inherent immunity to power fluctuation. In this paper, we provide a detailed experimental and theoretical characterization and verification of this method with special focus on broadband liquid sample analysis. For this purpose, we develop a compact benchtop dispersion spectroscopy setup based on an EC-QCL coupled to a Mach-Zehnder interferometer. Phase-locked interferometric detection enables to fully harness the advantages of the technique. By instrument operation in the quadrature point combined with balanced detection, the full immunity towards laser power fluctuations and the environmental noise can be achieved. On the example of ethanol (0.5-50% v/v) dissolved in water, it is experimentally demonstrated that changes of the refractive index function are linearly related to concentration also for strongly absorbing, highly concentrated samples beyond the validity of the Beer-Lambert law. Characterization of the sensitivity and noise behavior indicates that the optimum applicable pathlength for liquid analysis can be extended beyond the ones for absorption spectroscopy. Experimental demonstration of the advantages over classical absorption spectroscopy illuminates the potential of dispersion spectroscopy as upcoming robust and sensitive way of recording IR spectra of liquid samples.


Assuntos
Lasers , Refratometria , Espectrofotometria Infravermelho , Água/química
7.
Foods ; 11(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36496714

RESUMO

This study presents the first mid-infrared (IR)-based method capable of simultaneously predicting concentrations of individual fatty acids (FAs) and relevant sum parameters in human milk (HM). Representative fat fractions of 50 HM samples were obtained by rapid, two-step centrifugation and subsequently measured with attenuated total reflection IR spectroscopy. Partial least squares models were compiled for the acquired IR spectra with gas chromatography-mass spectrometry (GC-MS) reference data. External validation showed good results particularly for the most important FA sum parameters and the following individual FAs: C12:0 (R2P = 0.96), C16:0 (R2P = 0.88), C18:1cis (R2P = 0.92), and C18:2cis (R2P = 0.92). Based on the obtained results, the effect of different clinical parameters on the HM FA profile was investigated, indicating a change of certain sum parameters over the course of lactation. Finally, assessment of the method's greenness revealed clear superiority compared to GC-MS methods. The reported method thus represents a high-throughput, green alternative to resource-intensive established techniques.

8.
J Biotechnol ; 359: 108-115, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36206851

RESUMO

Protein L (PpL) is a universal binding ligand that can be used for the detection and purification of antibodies and antibody fragments. Due to the unique interaction with immunoglobulin light chains, it differs from other affinity ligands, like protein A or G. However, due to its current higher market price, PpL is still scarce in applications. In this study, we investigated the recombinant production and purification of PpL and characterized the product in detail. We present a comprehensive roadmap for the production of the versatile protein PpL in E. coli.


Assuntos
Proteínas de Bactérias , Escherichia coli , Ligantes , Cromatografia de Afinidade , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Recombinantes/metabolismo , Fragmentos de Imunoglobulinas , Cadeias Leves de Imunoglobulina , Ligação Proteica
9.
Nat Commun ; 13(1): 4753, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963870

RESUMO

Mid-infrared spectroscopy is a sensitive and selective technique for probing molecules in the gas or liquid phase. Investigating chemical reactions in bio-medical applications such as drug production is recently gaining particular interest. However, monitoring dynamic processes in liquids is commonly limited to bulky systems and thus requires time-consuming offline analytics. In this work, we show a next-generation, fully-integrated and robust chip-scale sensor for online measurements of molecule dynamics in a liquid solution. Our fingertip-sized device utilizes quantum cascade technology, combining the emitter, sensing section and detector on a single chip. This enables real-time measurements probing only microliter amounts of analyte in an in situ configuration. We demonstrate time-resolved device operation by analyzing temperature-induced conformational changes of the model protein bovine serum albumin in heavy water. Quantitative measurements reveal excellent performance characteristics in terms of sensor linearity, wide coverage of concentrations, extending from 0.075 mg ml-1 to 92 mg ml-1 and a 55-times higher absorbance than state-of-the-art bulky and offline reference systems.


Assuntos
Dispositivos Lab-On-A-Chip , Espectrofotometria Infravermelho , Temperatura
10.
Anal Chem ; 94(32): 11192-11200, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35926134

RESUMO

An external-cavity quantum cascade laser (EC-QCL)-based flow-through mid-infrared (IR) spectrometer was placed in line with a preparative size exclusion chromatography system to demonstrate real-time analysis of protein elutions with strongly overlapping chromatographic peaks. Two different case studies involving three and four model proteins were performed under typical lab-scale purification conditions. The large optical path length (25 µm), high signal-to-noise ratios, and wide spectral coverage (1350 to 1750 cm-1) of the QCL-IR spectrometer allow for robust spectra acquisition across both the amide I and II bands. Chemometric analysis by self-modeling mixture analysis and multivariate curve resolution enabled accurate quantitation and structural fingerprinting across the protein elution transient. The acquired concentration profiles were found to be in excellent agreement with the off-line high-performance liquid chromatography reference analytics performed on the collected effluent fractions. These results demonstrate that QCL-IR detectors can be used effectively for in-line, real-time analysis of protein elutions, providing critical quality attribute data that are typically only accessible through time-consuming and resource-intensive off-line methods.


Assuntos
Quimiometria , Lasers Semicondutores , Cromatografia em Gel , Proteínas , Espectrofotometria Infravermelho/métodos
11.
Anal Chem ; 94(14): 5583-5590, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35353485

RESUMO

In this study, an external cavity-quantum cascade laser-based mid-infrared (IR) spectrometer was applied for in-line monitoring of proteins from preparative ion-exchange chromatography. The large optical path length of 25 µm allowed for robust spectra acquisition in the broad tuning range between 1350 and 1750 cm-1, covering the most important spectral region for protein secondary structure determination. A significant challenge was caused by the overlapping mid-IR bands of proteins and changes in the background absorption of water due to the NaCl gradient. Implementation of advanced background compensation strategies resulted in high-quality protein spectra in three different model case studies. In Case I, a reference blank run was directly subtracted from a sample run with the same NaCl gradient. Case II and III included sample runs with different gradient profiles than the one from the reference run. Here, a novel compensation approach based on a reference spectra matrix was introduced, where the signal from the conductivity detector was employed for correlating suitable reference spectra for correction of the sample run spectra. With this method, a single blank run was sufficient to correct various gradient profiles. The obtained IR spectra of hemoglobin and ß-lactoglobulin were compared to off-line reference measurements, showing excellent agreement for all case studies. Moreover, the concentration values obtained from the mid-IR spectrometer agreed well with conventional UV detectors and high-performance liquid chromatography off-line measurements. LC-QCL-IR coupling thus holds high potential for replacing laborious and time-consuming off-line methods for protein monitoring in complex downstream processes.


Assuntos
Lactoglobulinas , Cloreto de Sódio , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Espectrofotometria Infravermelho/métodos
12.
Appl Spectrosc ; 76(6): 730-736, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35119320

RESUMO

This study introduces the first mid-infrared (IR)-based method for determining the fatty acid composition of human milk. A representative milk lipid fraction was obtained by applying a rapid and solvent-free two-step centrifugation method. Attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy was applied to record absorbance spectra of pure milk fat. The obtained spectra were compared to whole human milk transmission spectra, revealing the significantly higher degree of fatty acid-related spectral features in ATR FT-IR spectra. Partial least squares (PLS)-based multivariate regression equations were established by relating ATR FT-IR spectra to fatty acid reference concentrations, obtained with gas chromatography-mass spectrometry (GC-MS). Good predictions were achieved for the most important fatty acid sum parameters: saturated fatty acids (SAT, R2CV = 0.94), monounsaturated fatty acids (MONO, R2CV = 0.85), polyunsaturated fatty acids (PUFA, R2CV = 0.87), unsaturated fatty acids (UNSAT, R2CV = 0.91), short-chain fatty acids (SCFA, R2CV = 0.79), medium-chain fatty acids (MCFA, R2CV = 0.97), and long-chain fatty acids (LCFA, R2CV = 0.88). The PLS selectivity ratio (SR) was calculated in order to optimize and verify each individual calibration model. All mid-IR regions with high SR could be assigned to absorbances from fatty acids, indicating high validity of the obtained models.


Assuntos
Ácidos Graxos , Leite Humano , Animais , Ácidos Graxos/análise , Humanos , Leite/química , Leite Humano/química , Solventes/análise , Espectrofotometria Infravermelho/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
13.
Appl Spectrosc ; 76(1): 141-149, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34918968

RESUMO

Mid-infrared attenuated total reflection (ATR) spectroscopy is a powerful tool for in situ monitoring of various processes. Mesoporous silica, an extensively studied material, has already been applied in sensing schemes due to its high surface area and tunable surface chemistry. However, its poor chemical stability in aqueous solutions at pH values higher than 8 and strong absorption below 1250 cm-1 limits its range of applications. To circumvent these problems, a mesoporous zirconia coating on ATR crystals was developed. Herein, the synthesis, surface modification, and characterization of ordered mesoporous zirconia films on Si wafers and Si-ATR crystals are presented. The modified coating was applied in sensing schemes using aromatic and aliphatic nitriles in aqueous solution as organic pollutants. The mesoporous zirconia coating shows strong chemical resistance when kept in alkaline solution for 72 h. The success of surface modification is confirmed using Fourier transform infrared (FT-IR) spectroscopy and contact angle measurements. Benzonitrile and valeronitrile in water are used as model analytes to evaluate the enrichment performance of the film. The experimental results are fitted using Freundlich isotherms, and enrichment factors of 162 and 26 are calculated for 10 mg L-1 benzonitrile and 25 mg L-1 valeronitrile in water, respectively. Limits of detection of 1 mg L-1 for benzonitrile and 11 mg L-1 for valeronitrile are obtained. The high chemical stability of this coating allows application in diverse fields such as catalysis with the possibility of in situ monitoring using FT-IR spectroscopy.

14.
Foods ; 10(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064791

RESUMO

In the present study, a novel approach for mid-infrared (IR)-based prediction of bovine milk fatty acid composition is introduced. A rapid, solvent-free, two-step centrifugation method was applied in order to obtain representative milk fat fractions. IR spectra of pure milk lipids were recorded with attenuated total reflection Fourier-transform infrared (ATR-FT-IR) spectroscopy. Comparison to the IR transmission spectra of whole milk revealed a higher amount of significant spectral information for fatty acid analysis. Partial least squares (PLS) regression models were calculated to relate the IR spectra to gas chromatography/mass spectrometry (GC/MS) reference values, providing particularly good predictions for fatty acid sum parameters as well as for the following individual fatty acids: C10:0 (R2P = 0.99), C12:0 (R2P = 0.97), C14:0 (R2P = 0.88), C16:0 (R2P = 0.81), C18:0 (R2P = 0.93), and C18:1cis (R2P = 0.95). The IR wavenumber ranges for the individual regression models were optimized and validated by calculation of the PLS selectivity ratio. Based on a set of 45 milk samples, the obtained PLS figures of merit are significantly better than those reported in literature using whole milk transmission spectra and larger datasets. In this context, direct IR measurement of the milk fat fraction inherently eliminates covariation structures between fatty acids and total fat content, which poses a common problem in IR-based milk fat profiling. The combination of solvent-free lipid separation and ATR-FT-IR spectroscopy represents a novel approach for fast fatty acid prediction, with the potential for high-throughput application in routine lab operation.

15.
Lab Chip ; 21(9): 1811-1819, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949396

RESUMO

Acoustic trapping is a non-contact particle manipulation method that holds great potential for performing automated assays. We demonstrate an aluminium acoustic trap in combination with attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) for detection of E. coli in water. The thermal conductivity of aluminium was exploited to thermo-electrically heat and hold the acoustic trap at the desired assay temperature of 37 °C. Systematic characterisation and optimisation of the acoustic trap allowed high flow rates while maintaining high acoustic trapping performance. The ATR element serves not only as a reflector for ultrasound standing wave generation but also as a sensing interface. The enzyme conversion induced by alkaline phosphatase-labelled bacteria was directly monitored in the acoustic trap using ATR-FTIR spectroscopy. Sequential injection analysis allowed automated liquid handling, including non-contact bacteria retention, washing and enzyme-substrate exchange within the acoustic trap. The presented method was able to detect E. coli concentrations as low as 1.95 × 106 bacteria per mL in 197 min. The demonstrated ultrasound assisted assay paves the way to fully automated bacteria detection devices based on acoustic trapping combined with ATR-FTIR spectroscopy.


Assuntos
Alumínio , Escherichia coli , Acústica , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier , Água
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 253: 119563, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33621933

RESUMO

Laser-based infrared (IR) spectroscopy is an emerging key technology for the analysis of solutes and for real-time reaction monitoring in liquids. Larger applicable pathlengths compared to the traditional gold standard Fourier transform IR (FTIR) spectroscopy enable robust measurements of analytes in a strongly absorbing matrix such as water. Recent advancements in laser development also provide large accessible spectral coverage thus overcoming an inherent drawback of laser-based IR spectroscopy. In this work, we benchmark a commercial room temperature operated broadband external cavity-quantum cascade laser (EC-QCL)-IR spectrometer with a spectral coverage of 400 cm-1 against FTIR spectroscopy and showcase its application for measuring the secondary structure of proteins in water, and for monitoring the lipase-catalyzed saponification of triacetin. Regarding the obtained limit of detection (LOD), the laser-based spectrometer compared well to a research-grade FTIR spectrometer employing a liquid nitrogen cooled detector. With respect to a routine FTIR spectrometer equipped with a room temperature operated pyroelectric detector, a 15-fold increase in LOD was obtained in the spectral range of 1600-1700 cm-1. Characteristic spectral features in the amide I and amide II region of three representative proteins with different secondary structures could be measured at concentrations as low as 0.25 mg mL-1. Enzymatic hydrolysis of triacetin by lipase was monitored, demonstrating the advantage of a broad spectral coverage for following complex chemical reactions. The obtained results in combination with the portability and small footprint of the employed spectrometer opens a wide range of future applications in protein analysis and industrial process control, which cannot be readily met by FTIR spectroscopy without recurring to liquid nitrogen cooled detectors.


Assuntos
Lasers Semicondutores , Proteínas , Estrutura Secundária de Proteína , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier
17.
ACS Sens ; 6(1): 35-42, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33372759

RESUMO

In this work, we introduce polarimetric balanced detection as a new attenuated total reflection (ATR) infrared (IR) sensing scheme, leveraging unequal effective thicknesses achieved with laser light of different polarizations. We combined a monolithic widely tunable Vernier quantum cascade laser (QCL-XT) and a multibounce ATR IR spectroscopy setup for analysis of liquids in a process analytical setting. Polarimetric balanced detection enables simultaneous recording of background and sample spectra, significantly reducing long-term drifts. The root-mean-square noise could be improved by a factor of 10 in a long-term experiment, compared to conventional absorbance measurements obtained via the single-ended optical channel. The sensing performance of the device was further evaluated by on-site measurements of ethanol in water, leading to an improved limit of detection (LOD) achieved with polarimetric balanced detection. Sequential injection analysis was employed for automated injection of samples into a custom-built ATR flow cell mounted above a zinc sulfide multibounce ATR element. The QCL-XT posed to be suitable for mid-IR-based sensing in liquids due to its wide tunability. Polarimetric balanced detection proved to enhance the robustness and long-term stability of the sensing device, along with improving the LOD by a factor of 5. This demonstrates the potential for new polarimetric QCL-based ATR mid-IR sensing schemes for in-field measurements or process monitoring usually prone to a multitude of interferences.


Assuntos
Lasers Semicondutores , Água , Espectrofotometria Infravermelho
18.
Opt Express ; 28(24): 36632-36642, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379753

RESUMO

Novel laser light sources in the mid-infrared region enable new spectroscopy schemes beyond classical absorption spectroscopy. Herein, we introduce a refractive index sensor based on a Mach-Zehnder interferometer and an external-cavity quantum cascade laser that allows rapid acquisition of high-resolution spectra of liquid-phase samples, sensitive to relative refractive index changes down to 10-7. Dispersion spectra of three model proteins in deuterated solution were recorded at concentrations as low as 0.25 mg mL-1. Comparison with Kramers-Kronig-transformed Fourier transform infrared absorbance spectra revealed high conformance, and obtained figures of merit compare well with conventional high-end FTIR spectroscopy. Finally, we performed partial least squares-based multivariate analysis of a complex ternary protein mixture to showcase the potential of dispersion spectroscopy utilizing the developed sensor to tackle complex analytical problems. The results indicate that laser-based dispersion sensing can be successfully used for qualitative and quantitative analysis of proteins.


Assuntos
Concanavalina A/química , Interferometria/instrumentação , Ovalbumina/química , Estrutura Secundária de Proteína , Refratometria/instrumentação , Soroalbumina Bovina/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Animais , Lasers Semicondutores
19.
Anal Chem ; 92(14): 9901-9907, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32597635

RESUMO

We report a mid-IR transmission setup for the analysis of the protein amide I and amide II band in aqueous solutions that achieves a limit of detection as low as 0.0025 mg mL-1 (outperforming our previous results and other state-of-the-art mid-IR-based techniques by almost an order of magnitude). This large improvement is made possible by combining the latest-generation external cavity-quantum cascade laser (EC-QCL) operated at room temperature with an optimized double-beam optical setup that adjusts the path length (26 µm) to ensure robust sample handling. For minimizing the noise introduced by the high-intensity laser light source, a thermoelectrically cooled mercury cadmium telluride balanced detection module was employed. In this way, noise levels better by a factor of up to 20 were achieved compared with single-channel measurements. Characteristic spectral features of proteins with different secondary structures were successfully identified at concentrations as low as 0.1 mg mL-1. Furthermore, a highly linear response was demonstrated for concentrations between 0.05 and 10 mg mL-1. The total acquisition time of the setup can be adapted to fulfill the required sensitivity of the protein measurements and to ensure maximum flexibility for future applications. The presented setup combines high sensitivity, large optical path lengths, and short measurement times and thus outperforms previous research type EC-QCL setups as well as commercially available instruments. This opens a wide range of future applications including protein-ligand interaction studies as well as qualitative and quantitative analyses of proteins in complex matrices such as those found in up- and downstream bioprocess monitoring and similar challenging applications which can not be readily met by conventional FT-IR spectroscopy.


Assuntos
Lasers Semicondutores , Espectrofotometria Infravermelho/métodos , Animais , Bovinos , Concanavalina A/química , Fabaceae/química , Hemoglobinas/química , Estrutura Secundária de Proteína , gama-Globulinas/química
20.
Int J Mol Sci ; 21(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485932

RESUMO

The bacterium E. coli is one of the most important hosts for recombinant protein production. The benefits are high growth rates, inexpensive media, and high protein titers. However, complex proteins with high molecular weight and many disulfide bonds are expressed as inclusion bodies (IBs). In the last decade, the overall perception of these IBs being not functional proteins changed, as enzyme activity was found within IBs. Several applications for direct use of IBs are already reported in literature. While fluorescent proteins or protein tags are used for determination of IB activity to date, direct measurements of IB protein activity are scacre. The expression of recombinant hyaluronidase from Apis mellifera in E. coli BL21(DE3) was analyzed using a face centered design of experiment approach. Hyaluronidase is a hard to express protein and imposes a high metabolic burden to the host. Conditions giving a high specific IB titer were found at 25 °C at low specific substrate uptake rates and induction times of 2 to 4 h. The protein activity of hyaluronidase IBs was verified using (Fourier transform) FT-IR spectroscopy. Degradation of the substrate hyaluronan occurred at increased rates with higher IB concentrations. Active recombinant hyaluronidase IBs can be immediately used for direct degradation of hyaluronan without further down streaming steps. FT-IR spectroscopy was introduced as a method for tracking IB activity and showed differences in degradation behavior of hyaluronan dependent on the applied active IB concentration.


Assuntos
Escherichia coli/metabolismo , Hialuronoglucosaminidase/biossíntese , Corpos de Inclusão/metabolismo , Proteínas Recombinantes/biossíntese , Animais , Abelhas , Biomassa , Reatores Biológicos , Meios de Cultura/metabolismo , Dissulfetos , Fermentação , Ácido Hialurônico/metabolismo , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA