Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21305, 2023 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042941

RESUMO

Methane (CH4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH4. To address this limitation, we developed novel CH4 prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH4 production (g CH4/animal·d, ANIM-B models) and CH4 yield (g CH4/kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin's concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH4 prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH4 emissions from sheep, providing valuable insights for future research and mitigation strategies.


Assuntos
Metano , Rúmen , Ovinos , Animais , Feminino , Teorema de Bayes , Ruminantes , Dieta/veterinária , Bactérias/genética , Ração Animal/análise , Lactação
2.
J Anim Physiol Anim Nutr (Berl) ; 106(6): 1356-1363, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35894118

RESUMO

Sieve analyses of hindgut contents of horses as well as observations in horses where plastic markers had been applied to a caecal cannula suggested that there may be a discrimination by particle size in the passage or retention of digesta. Here, we performed a similar experiment with five caecum-cannulated horses (562 ± 31 kg) fed a constant amount (6.81 kg dry matter/day) of grass hay. Passage markers representing the liquid (Co-EDTA) as well as the particulate digesta phase (Yb-undefined; Cr mordanted fibre 1-2 mm; Ce-mordanted fibre 8 mm) were given as a pulse-dose into the cannula to measure their mean retention times (MRT). The MRTs were compared by repeated-measurements analysis of variance. The MRT in the hindgut was 22.2 ± 2.4 h for Co, 25.0 ± 3.4 h for Yb, 26.2 ± 1.6 h for Cr and 26.3 ± 1.5 h for Ce. Whereas differences between the particle marker MRTs were not significant (padj. > 0.05), significant differences were observed between the solute marker Co and each of the particle markers Cr and Ce (padj. < 0.009). The results confirm the well-known significant, albeit small, difference in MRT in horses between the fluid and the particle digesta phase, and corroborate another recent study that used a combination of whole, marked hay and individual marker analysis in different particle size fractions of the faeces, which also did not detect a selective retention of any particle size class.


Assuntos
Ceco , Cavalos , Tamanho da Partícula , Animais , Ração Animal , Ceco/anatomia & histologia , Ceco/fisiologia , Fibras na Dieta/administração & dosagem , Fibras na Dieta/análise , Digestão , Fezes/química , Cavalos/anatomia & histologia , Cateterismo/veterinária
3.
Proc Natl Acad Sci U S A ; 119(20): e2111294119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35537050

RESUMO

To meet the 1.5 °C target, methane (CH4) from ruminants must be reduced by 11 to 30% by 2030 and 24 to 47% by 2050 compared to 2010 levels. A meta-analysis identified strategies to decrease product-based (PB; CH4 per unit meat or milk) and absolute (ABS) enteric CH4 emissions while maintaining or increasing animal productivity (AP; weight gain or milk yield). Next, the potential of different adoption rates of one PB or one ABS strategy to contribute to the 1.5 °C target was estimated. The database included findings from 430 peer-reviewed studies, which reported 98 mitigation strategies that can be classified into three categories: animal and feed management, diet formulation, and rumen manipulation. A random-effects meta-analysis weighted by inverse variance was carried out. Three PB strategies­namely, increasing feeding level, decreasing grass maturity, and decreasing dietary forage-to-concentrate ratio­decreased CH4 per unit meat or milk by on average 12% and increased AP by a median of 17%. Five ABS strategies­namely CH4 inhibitors, tanniferous forages, electron sinks, oils and fats, and oilseeds­decreased daily methane by on average 21%. Globally, only 100% adoption of the most effective PB and ABS strategies can meet the 1.5 °C target by 2030 but not 2050, because mitigation effects are offset by projected increases in CH4 due to increasing milk and meat demand. Notably, by 2030 and 2050, low- and middle-income countries may not meet their contribution to the 1.5 °C target for this same reason, whereas high-income countries could meet their contributions due to only a minor projected increase in enteric CH4 emissions.


Assuntos
Metano , Ruminantes , África , Animais , Países em Desenvolvimento , Europa (Continente) , Aquecimento Global/prevenção & controle , Metano/análise
4.
J Dairy Sci ; 105(6): 5124-5140, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35346462

RESUMO

Direct measurements of methane (CH4) from individual animals are difficult and expensive. Predictions based on proxies for CH4 are a viable alternative. Most prediction models are based on multiple linear regressions (MLR) and predictor variables that are not routinely available in commercial farms, such as dry matter intake (DMI) and diet composition. The use of machine learning (ML) algorithms to predict CH4 emissions from across-country heterogeneous data sets has not been reported. The objectives were to compare performances of ML ensemble algorithm random forest (RF) and MLR models in predicting CH4 emissions from proxies in dairy cows, and assess effects of imputing missing data points on prediction accuracy. Data on CH4 emissions and proxies for CH4 from 20 herds were provided by 10 countries. The integrated data set contained 43,519 records from 3,483 cows, with 18.7% missing data points imputed using k-nearest neighbor imputation. Three data sets were created, 3k (no missing records), 21k (missing DMI imputed from milk, fat, protein, body weight), and 41k (missing DMI, milk fat, and protein records imputed). These data sets were used to test scenarios (with or without DMI, imputed vs. nonimputed DMI, milk fat, and protein), and prediction models (RF vs. MLR). Model predictive ability was evaluated within and between herds through 10-fold cross-validation. Prediction accuracy was measured as correlation between observed and predicted CH4, root mean squared error (RMSE) and mean normalized discounted cumulative gain (NDCG). Inclusion of DMI in the model improved within and between-herd prediction accuracy to 0.77 (RMSE = 23.3%) and 0.58 (RMSE = 31.9%) in RF and to 0.50 (RMSE = 0.327) and 0.13 (RMSE = 42.71) in MLR, respectively than when DMI was not included in the predictive model. When missing DMI records were imputed, within and between-herd accuracy increased to 0.84 (RMSE = 18.5%) and 0.63 (RMSE = 29.9%), respectively. In all scenarios, RF models out-performed MLR models. Results suggest routinely measured variables from dairy farms can be used in developing globally robust prediction models for CH4 if coupled with state-of-the-art techniques for imputation and advanced ML algorithms for predictive modeling.


Assuntos
Lactação , Metano , Animais , Bovinos , Dieta/veterinária , Feminino , Intestino Delgado/metabolismo , Metano/metabolismo , Leite/química
5.
Animals (Basel) ; 11(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202055

RESUMO

The aim of this study was to develop a basic model to predict enteric methane emission from dairy cows and to update operational calculations for the national inventory in Norway. Development of basic models utilized information that is available only from feeding experiments. Basic models were developed using a database with 63 treatment means from 19 studies and were evaluated against an external database (n = 36, from 10 studies) along with other extant models. In total, the basic model database included 99 treatment means from 29 studies with records for enteric CH4 production (MJ/day), dry matter intake (DMI) and dietary nutrient composition. When evaluated by low root mean square prediction errors and high concordance correlation coefficients, the developed basic models that included DMI, dietary concentrations of fatty acids and neutral detergent fiber performed slightly better in predicting CH4 emissions than extant models. In order to propose country-specific values for the CH4 conversion factor Ym (% of gross energy intake partitioned into CH4) and thus to be able to carry out the national inventory for Norway, the existing operational model was updated for the prediction of Ym over a wide range of feeding situations. A simulated operational database containing CH4 production (predicted by the basic model), feed intake and composition, Ym and gross energy intake (GEI), in addition to the predictor variables energy corrected milk yield and dietary concentrate share were used to develop an operational model. Input values of Ym were updated based on the results from the basic models. The predicted Ym ranged from 6.22 to 6.72%. In conclusion, the prediction accuracy of CH4 production from dairy cows was improved with the help of newly published data, which enabled an update of the operational model for calculating the national inventory of CH4 in Norway.

6.
Animals (Basel) ; 10(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599809

RESUMO

The present study evaluated the effects of linseed supplementation on CH4 emission and milk fatty acid composition in dairy cows measured at the group level in an experimental dairy loose housing using a tracer gas technique and individually in tied stalls and respiration chambers. Cows (2 × 20) were maintained in two separate sections under loose-housing conditions and received a diet supplemented with extruded linseed (L) lipids (29 g·kg-1 dry matter) or a control (C) diet containing corn flour. Subsequently, 2 × 6 cows per dietary group were investigated in a tied-housing system and respiration chambers. Substantially higher proportions of favorable milk fatty acids were recovered in L cows when compared with C cows at the group level, making the analysis of bulk milk a suitable control instrument for retailers. Linseed supplementation resulted in a slightly lower diurnal course of CH4 emission intensity than the control at the group and individual levels. However, we found no more than a trend for a CH4 mitigating effect, unlike in other studies supplementing similar linseed lipid levels. Feed supplements in concentrations that lead to a significant reduction in CH4 emissions must show whether the reduction potential determined at the group and individual levels is comparable.

7.
J Anim Sci ; 97(11): 4496-4502, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31504598

RESUMO

Hazel leaves (Corylus avellana) fed to sheep resulted in decreased methane emissions without negatively affecting feed intake and were found to have antioxidant properties in vitro. The objective of this study was to evaluate effects of hazel leaves, rich in tannins, on blood antioxidant activity, cellular immune response, and heart beat parameters in sheep. Four experimental pellets were produced by mixing alfalfa and hazel leaves in different proportions, including alfalfa alone as a control, 30% and 60% of hazel leaves, the latter also with 3.8% polyethylene glycol (PEG). Six adult, nonpregnant, nonlactating female sheep (71 ± 5.7 kg of body weight) were allocated to 4 treatments in a 6 × 4 crossover design with four 18-d periods. The diet consisted of experimental pellets and ryegrass-dominated hay (ratio 80% to 20% in dry matter), resulting in hazel leaf proportions of approximately 0%, 25%, and 50% in the total diet. Blood samples were collected at the end of each period to determine plasma total phenol concentration and markers of oxidative status as well as peripheral blood mononuclear cells (PBMC) activation and proliferation response in vitro. Heart rate (HR) and HR variability parameters were measured for 2 consecutive days in each period, during different activities (i.e., eating pellets or hay, or lying). Treatments were compared with multiple comparisons and contrast analysis was used to test for linear and quadratic relations. Compared with control, feeding a high dosage of hazel leaves enhanced (P = 0.006) the plasma total antioxidant capacity, which linearly (P = 0.016) increased with increasing level of hazel leaves in the diet. The total phenol concentration and activities of the antioxidant enzymes superoxide dismutase, catalase, and glutathione reductase in the plasma were not different (P ≥ 0.23) among the treatments; however, the latter slightly increased linearly (P = 0.047) with increasing hazel leaves proportion. No differences were observed in the activation and proliferation of PBMC among treatments. The HR decreased linearly (P ≤ 0.009) during pellet eating and lying and the root mean square of successive differences of interbeat intervals (RMSSD) increased linearly (P = 0.037) when lying with increasing level of hazel leaves in the diet. In conclusion, our findings indicate that hazel leaves are a promising supplement to improve oxidative status with no effect on cellular immune response and cardiac stress level of sheep.


Assuntos
Antioxidantes/metabolismo , Corylus/química , Suplementos Nutricionais/análise , Imunidade Celular/efeitos dos fármacos , Ovinos/fisiologia , Ração Animal/análise , Animais , Proliferação de Células , Dieta/veterinária , Feminino , Frequência Cardíaca/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lolium , Medicago sativa , Metano/metabolismo , Folhas de Planta/química , Ovinos/sangue , Ovinos/imunologia , Taninos/metabolismo
8.
Physiol Behav ; 208: 112558, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125579

RESUMO

The digestive tract of animals, and the patterns how passage markers are excreted from them, have been fruitfully compared to chemical reactor models from engineering science. An important characteristic of idealized reactor models is the smoothness of the curves plotting marker concentrations in outflow (i.e., faeces) over time, which is the result of the assumed complete mixing of the marker with the reactor contents. Published excretion patterns from passage experiments in non-primate mammals appear to indicate a high degree of digesta mixing. In order to assess whether marker excretion graphs from primates differ from ideal outflow graphs, we performed passage experiments in eight individuals of three foregut-fermenting species (Pygathrix nemaeus, Trachypithecus auratus and Semnopithecus vetulus), and added them to available marker excretion curves from the literature. In the resulting collection, 23 out of a total of 25 patterns in foregut fermenters (21 individuals of 10 species from 7 studies), and 13 out of 15 in hindgut fermenters (9 individuals of 2 species from 2 studies), showed an irregular, 'spiky' pattern. We consider this proportion to be too high to be explained by experimental errors, and suggest that this may indicate a taxon-wide characteristic of particularly incomplete digesta mixing, acknowledging that further data from less related primate species are required for corroboration. Our hypothesis is in accordance with previous findings of a comparatively low degree of 'digesta washing' (differential retention of particulate and fluid digesta) in primates. Together with literature findings that suggest a low chewing efficiency in primates compared to other mammals, these observations indicate that in contrast to other herbivores, the success of the primate order is not derived from particularly elaborate adaptations of their ingestive and digestive physiology.


Assuntos
Trato Gastrointestinal/fisiologia , Primatas/fisiologia , Adaptação Fisiológica , Animais , Biomarcadores/metabolismo , Defecação/fisiologia , Digestão/fisiologia , Feminino , Fermentação/fisiologia , Alimentos , Trânsito Gastrointestinal/fisiologia , Masculino
9.
Zoo Biol ; 38(2): 167-179, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30623974

RESUMO

The capybara (Hydrochoerus hydrochaeris), the largest living rodent, probably has a "mucus-trap" colonic separation mechanism. To test this hypothesis, we measured the mean retention time of a solute marker (MRTSolute ), 2 mm (MRT2 mm ), 10 mm (MRT10 mm ), and 20 mm (MRT20 mm ) particle markers and nutrient digestibility in adult captive capybaras (27-52 kg body mass (BM), 2-11 yr). In addition, total gut fill and the selectivity factor (MRTSolute /MRT2 mm ) were calculated, and mean faecal particle size and metabolic fecal nitrogen of captive capybaras were compared to those of free-ranging specimens. Finally, we also measured methane production in one animal. The MRT2 mm (29.2 ± 8.2 hr) was different (p < 0.01) from MRTSolute (37.0 ± 13.1 hr), MRT10 mm (36.5 ± 8.2 hr), and MRT20 mm (35.1 ± 9.6 hr). The selectivity factor (1.26 ± 0.30) was in the range considered typical for a "mucus-trap" colonic separation mechanism. The estimated total gut fill was 1.50 ± 0.37% and 1.73 ± 0.25% of BM calculated from the results of the 2-mm and 10-mm particle markers, respectively. The CH4 emission was 13.7 L/day. Captive capybaras had greater mean fecal particle size (0.44 ± 0.06 vs. 0.29 ± 0.05 mm, p < 0.001) and metabolic fecal nitrogen (65.5 ± 3.91 vs. 46.8 ± 10.5% of fecal nitrogen, p < 0.001) than free-ranging capybaras. Organic matter digestibility decreased less steeply with increasing dietary crude fiber content in capybaras as compared to published data from rabbits or guinea pigs. Accordingly, the digestive physiology of the capybara is characterized by a comparatively high fiber digestibility, with a "mucus-trap" colonic separation mechanism, allowing capybaras to thrive on forage-only diets.


Assuntos
Animais de Zoológico , Digestão/fisiologia , Roedores/fisiologia , Animais , Fezes/química , Feminino , Trânsito Gastrointestinal , Masculino , Metano , Roedores/anatomia & histologia
10.
J Anim Physiol Anim Nutr (Berl) ; 102(6): 1515-1520, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30073718

RESUMO

This in vitro study examined the ability of important immune modulators [ß-hydroxybutyrate (BHB), cortisol, prolactin, isoproterenol and insulin] to influence the responsiveness of peripheral blood mononuclear cells (PBMC) from multiparous dairy cows 29 ± 2 days before and 14 ± 3 days after calving. The activation and proliferation of PBMC in response to the mitogen phytohemagglutinin was estimated by the oxygen consumption rate after 24 hr and the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5diphenyl tetrazolium bromide) method after 72 hr respectively. In early lactation, the presence of 2 compared to 0.5 mmol/L BHB reduced PBMC activation (p < 0.05) and proliferation (p < 0.10), and the presence of 0.7 compared to 0.2 ng/ml insulin enhanced (p < 0.10) PBMC proliferation. In dry cows, the presence of low concentrations of BHB and insulin and both concentrations of prolactin (20 vs. 300 ng/ml) and isoproterenol (70 vs. 130 ng/L) enhanced activation (p < 0.10), but not proliferation (p ≥ 0.10) compared to cultures with no modulator addition. The presence or absence of high or low concentrations of hydrocortisone (20 vs. 45 nmol/L) did not (p ≥ 0.10) influence the activation and proliferation of PBMC from dry and early lactating cows. It is tempting to speculate that in antepartum PBMC the modulators represented an energy source or positive extrinsic signals to use nutrients for the activation process. On the other hand, PBMC from postpartum cows are known to be exposed to a metabolic challenging endocrine background. Under such conditions, high BHB concentrations and high insulin concentrations seem to act as negative and positive signals for PBMC, respectively, to utilize nutrients for activation and proliferation.


Assuntos
Bovinos/fisiologia , Proliferação de Células/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Animais , Bovinos/sangue , Células Cultivadas , Feminino , Lactação , Leucócitos Mononucleares/metabolismo , Paridade , Período Periparto , Gravidez
11.
Sci Rep ; 8(1): 5427, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615655

RESUMO

This study is the first to quantify the effects of hazel (Corylus avellana) leaves on methane and urinary nitrogen emissions, digestibility, nitrogen and the energy balance of ruminants. Four experimental pellets were produced with 0, 30% and 60% hazel leaves, the latter also with 4% polyethylene glycol. Hazel leaves gradually replaced lucerne. The diet was composed of the pellets and grass hay (80%: 20%). Six adult sheep were allocated to all four treatments in a 6 × 4 crossover design. Including hazel leaves did not affect the feed intake, but it decreased the apparent digestibility of organic matter and fibre, especially at the high level. Methane emission was reduced by up to 25 to 33% per day, per unit of intake and per unit of organic matter digested. Urinary nitrogen excretion decreased by 33 to 72% with increasing levels of hazel leaves. The treatment with polyethylene glycol demonstrated that tannins in hazel leaves caused significant shares of the effects. In conclusion, the current results indicated a significant potential of hazel leaves as forage for ruminants to mitigate methane and urinary nitrogen emissions. Even high dietary hazel leaf proportions were palatable. The lower digestibility needs to be compensated with easily digestible diet ingredients.


Assuntos
Ração Animal/análise , Corylus/química , Metano/metabolismo , Nitrogênio/urina , Folhas de Planta/química , Animais , Suplementos Nutricionais/análise , Digestão/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ovinos
12.
BMC Res Notes ; 11(1): 135, 2018 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-29454387

RESUMO

OBJECTIVE: Lauric acid (C12) is a medium-chain fatty acid that inhibits growth and production of the greenhouse gas methane by rumen methanogens such as Methanobrevibacter ruminantium. To understand the inhibitory mechanism of C12, a transcriptome analysis was performed in M. ruminantium strain M1 (DSM 1093) using RNA-Seq. RESULTS: Pure cell cultures in the exponential growth phase were treated with 0.4 mg/ml C12, dissolved in dimethyl sulfoxide (DMSO), for 1 h and transcriptomic changes were compared to DMSO-only treated cells (final DMSO concentration 0.2%). Exposure to C12 resulted in differential expression of 163 of the 2280 genes in the M1 genome (maximum log2-fold change 6.6). Remarkably, C12 hardly affected the expression of genes involved in methanogenesis. Instead, most affected genes encode cell-surface associated proteins (adhesion-like proteins, membrane-associated transporters and hydrogenases), and proteins involved in detoxification or DNA-repair processes. Enrichment analysis on the genes regulated in the C12-treated group showed a significant enrichment for categories 'cell surface' and 'mobile elements' (activated by C12), and for the categories 'regulation' and 'protein fate' (represssed). These results are useful to generate and test specific hypotheses on the mechanism how C12 affects rumen methanogens.


Assuntos
Ácidos Láuricos/farmacologia , Metano/metabolismo , Methanobrevibacter/efeitos dos fármacos , Rúmen/microbiologia , Transcriptoma/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Methanobrevibacter/genética , Análise de Sequência de RNA
13.
Glob Chang Biol ; 24(8): 3368-3389, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29450980

RESUMO

Enteric methane (CH4 ) production from cattle contributes to global greenhouse gas emissions. Measurement of enteric CH4 is complex, expensive, and impractical at large scales; therefore, models are commonly used to predict CH4 production. However, building robust prediction models requires extensive data from animals under different management systems worldwide. The objectives of this study were to (1) collate a global database of enteric CH4 production from individual lactating dairy cattle; (2) determine the availability of key variables for predicting enteric CH4 production (g/day per cow), yield [g/kg dry matter intake (DMI)], and intensity (g/kg energy corrected milk) and their respective relationships; (3) develop intercontinental and regional models and cross-validate their performance; and (4) assess the trade-off between availability of on-farm inputs and CH4 prediction accuracy. The intercontinental database covered Europe (EU), the United States (US), and Australia (AU). A sequential approach was taken by incrementally adding key variables to develop models with increasing complexity. Methane emissions were predicted by fitting linear mixed models. Within model categories, an intercontinental model with the most available independent variables performed best with root mean square prediction error (RMSPE) as a percentage of mean observed value of 16.6%, 14.7%, and 19.8% for intercontinental, EU, and United States regions, respectively. Less complex models requiring only DMI had predictive ability comparable to complex models. Enteric CH4 production, yield, and intensity prediction models developed on an intercontinental basis had similar performance across regions, however, intercepts and slopes were different with implications for prediction. Revised CH4 emission conversion factors for specific regions are required to improve CH4 production estimates in national inventories. In conclusion, information on DMI is required for good prediction, and other factors such as dietary neutral detergent fiber (NDF) concentration, improve the prediction. For enteric CH4 yield and intensity prediction, information on milk yield and composition is required for better estimation.


Assuntos
Agricultura/métodos , Bovinos/fisiologia , Metano/análise , Leite/estatística & dados numéricos , Animais , Austrália , Bases de Dados Factuais , Ingestão de Alimentos , Europa (Continente) , União Europeia , Feminino , Lactação , Metano/metabolismo , Leite/metabolismo , Modelos Teóricos , Estados Unidos
14.
J Sci Food Agric ; 98(5): 1712-1718, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28853148

RESUMO

BACKGROUND: A limited availability of microbial protein can impair productivity in ruminants. Ruminal nitrogen efficiency might be optimised by combining high-quality forage legumes such as red clover (RC), which has unfavourably high ruminal protein degradability, with tanniferous legumes like sainfoin (SF) and birdsfoot trefoil (BT). Silages from SF and from BT cultivars [Bull (BB) and Polom (BP)] were incubated singly or in combination with RC using the Rumen Simulation Technique (n = 6). RESULTS: The tanniferous legumes, when compared to RC, changed the total short-chain fatty acid profile by increasing propionate proportions at the expense of butyrate. Silage from SF contained the most condensed tannins (CTs) (136 g CT kg-1 dry matter) and clearly differed in various traits from the BT and RC silages. The apparent nutrient degradability (small with SF), microbial protein synthesis, and calculated content of potentially utilisable crude protein (large with SF) indicated that SF had the greatest efficiency in ruminal protein synthesis. The effects of combining SF with RC were mostly linear. CONCLUSION: The potential of sainfoin to improve protein supply, demonstrated either individually or in combination with a high-performance forage legume, indicates its potential usefulness in complementing protein-deficient ruminant diets and high-quality forages rich in rumen-degradable protein. © 2017 Society of Chemical Industry.


Assuntos
Ração Animal/análise , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Bovinos/metabolismo , Fabaceae/metabolismo , Nitrogênio/metabolismo , Rúmen/metabolismo , Rúmen/microbiologia , Animais , Digestão , Fabaceae/química , Fabaceae/classificação , Feminino , Microbioma Gastrointestinal , Lactação , Leite/metabolismo , Proantocianidinas/análise , Proantocianidinas/metabolismo
15.
Front Microbiol ; 8: 1864, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033916

RESUMO

Dietary lipids can suppress methane emission from ruminants, but effects are variable. Especially the role of bacteria, archaea, fungi and protozoa in mediating the lipid effects is unclear. In the present in vitro study, archaea, fungi and protozoa were selectively inhibited by specific agents. This was fully or almost fully successful for fungi and protozoa as well as archaeal activity as determined by the methyl-coenzyme M reductase alpha subunit gene. Five different microbial treatments were generated: rumen fluid being intact (I), without archaea (-A), without fungi (-F), without protozoa (-P) and with bacteria only (-AFP). A forage-concentrate diet given alone or supplemented with crushed full-fat oilseeds of either safflower (Carthamus tinctorius) or poppy (Papaver somniferum) or camelina (Camelina sativa) at 70 g oil kg-1 diet dry matter was incubated. This added up to 20 treatments with six incubation runs per treatment. All oilseeds suppressed methane emission compared to the non-supplemented control. Compared to the non-supplemented control, -F decreased organic matter (OM) degradation, and short-chain fatty acid concentration was greater with camelina and safflower seeds. Methane suppression per OM digested in -F was greater with camelina seeds (-12 vs.-7% with I, P = 0.06), but smaller with poppy seeds (-4 vs. -8% with I, P = 0.03), and not affected with safflower seeds. With -P, camelina seeds decreased the acetate-to-propionate ratio and enhanced the methane suppression per gram dry matter (18 vs. 10% with I, P = 0.08). Hydrogen recovery was improved with -P in any oilseeds compared to non-supplemented control. No methane emission was detected with the -A and -AFP treatments. In conclusion, concerning methanogenesis, camelina seeds seem to exert effects only on archaea and bacteria. By contrast, with safflower and poppy seeds methane was obviously reduced mainly through the interaction with protozoa or archaea associated with protozoa. This demonstrated that the microbial groups differ in their contribution to the methane suppressing effect dependent on the source of lipid. These findings help to understand how lipid supplementation and microbial groups interact, and thus may assist in making this methane mitigation tool more efficient, but await confirmation in vivo.

16.
J Sci Food Agric ; 97(11): 3864-3870, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28188639

RESUMO

BACKGROUND: Dietary supplementation with oilseeds can reduce methane emission in ruminants, but only a few common seeds have been tested so far. This study tested safflower (Carthamus tinctorius), poppy (Papaver somniferum), hemp (Cannabis sativa), and camelina (Camelina sativa) seeds in vitro using coconut (Cocos nucifera) oil and linseed (Linum usitatissimum) as positive controls. RESULTS: All the tested oilseeds suppressed methane yield (mL g-1 dry matter, up to 21%) compared to the non-supplemented control when provided at 70 g oil kg-1 dry matter, and they were as effective as coconut oil. Safflower and hemp were more effective than linseed (21% and 18% vs. 10%), whereas the effects of poppy and camelina were similar to linseed. When methane was related to digestible organic matter, only hemp and safflower seeds and coconut oil were effective compared to the non-supplemented control (up to 11%). The level of methanogenesis and the ratios of either the n-6:n-3 fatty acids or C18:2 :C18:3 in the seed lipids were not related. CONCLUSION: Unconventional oilseeds widen the spectrum of oilseeds that can be used in dietary methane mitigation. In vivo confirmation of their methane mitigating effect is still needed, and their effects on animal performance still must be determined. © 2017 Society of Chemical Industry.


Assuntos
Ração Animal/análise , Brassicaceae/metabolismo , Cannabis/metabolismo , Carthamus tinctorius/metabolismo , Metano/metabolismo , Papaver/metabolismo , Óleos de Plantas/metabolismo , Rúmen/metabolismo , Animais , Brassicaceae/química , Cannabis/química , Carthamus tinctorius/química , Bovinos , Suplementos Nutricionais/análise , Fermentação , Metano/análise , Modelos Biológicos , Papaver/química , Óleos de Plantas/química , Sementes/química , Sementes/metabolismo
17.
Arch Anim Nutr ; 71(1): 1-20, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27917680

RESUMO

Low-protein diets are increasingly being used in dairy cow nutrition to minimise noxious nitrogen (N) emissions. However, at parturition, the lower milk yield at that time may mask deficiency in dietary utilisable crude protein (uCP; equivalent to metabolisable protein). Under restrictive feeding conditions, farmers would limit the feed allowance to match the lower measured milk yield, thereby exacerbating the deficiency. The consequences for N emission intensity per kg milk yield and methane emissions are unknown. In this study, two diets were fed to nine Holstein cows each from parturition onwards. One diet was complete and the other was calculated as 20% deficient in uCP. Feed allowance was always oriented towards the measured milk yield. In each of the first eight lactation weeks, intake and excretion were measured for 5 d. On the last 2 d of this period, methane emission was measured in respiration chambers. The statistical model included treatment, week and interaction as effects. The real levels of uCP and energy supply across the 8 weeks were 33% and 15% below requirements, respectively, in the Deficient cows. In addition, the Deficient cows consumed 18% less dry matter (caused by substantial refusals in week 1, where energy supply was according to requirements) and produced 25% less milk (26 vs. 34 kg/d). Cows in both groups used dietary N with similar efficiency for milk protein synthesis and excreted similar proportions of the N ingested via urine and faeces. This resulted in both treatments having similar N emission intensities per kg milk N and similar urinary N as a proportion of total excreta N, suggesting a similar potential for gaseous N emissions from the manure per kg of milk. The Deficient cows emitted 22% less methane overall but had similar methane yield and emission intensity to the Controls. In conclusion, a reduction in crude protein intake immediately after parturition does not reduce N emission per unit of milk when associated with uCP deficiency.


Assuntos
Bovinos/metabolismo , Dieta com Restrição de Proteínas/veterinária , Leite/metabolismo , Nitrogênio/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Proteínas Alimentares/administração & dosagem , Feminino , Lactação , Metano/metabolismo , Nitrogênio/urina , Distribuição Aleatória
18.
Br J Nutr ; 116(5): 763-73, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27452637

RESUMO

Enteric methane (CH4) production is a side-effect of herbivore digestion, but it is unknown whether CH4 itself influences digestive physiology. We investigated the effect of adding CH4 to, or reducing it in, the reticulorumen (RR) in a 4×4 Latin square experiment with rumen-fistulated, non-lactating cows, with four treatments: (i) control, (ii) insufflation of CH4 (iCH4), (iii) N via rumen fistula, (iv) reduction of CH4 via administration of bromochloromethane (BCM). DM intake (DMI), apparent total tract digestibility, digesta mean retention times (MRT), rumen motility and chewing activity, spot breath CH4 emission (CH4exhal, litre/kg DMI) as well as CH4 dissolved in rumen fluid (CH4RRf, µg/ml) were measured. Data were analysed using mixed models, including treatment (or, alternatively, CH4exhal or CH4RRf) and DMI relative to body mass0·85 (rDMI) as covariates. rDMI was the lowest on the BCM treatment. CH4exhal was highest for iCH4 and lowest for BCM treatments, whereas only BCM affected (reduced) CH4RRf. After adjusting for rDMI, CH4RRf had a negative association with MRT in the gastrointestinal tract but not in the RR, and negative associations with fibre digestibility and measures of rumination activity. Adjusting for rDMI, CH4exhal had additionally a negative association with particle MRT in the RR and a positive association with rumen motility. Thus, higher rumen levels of CH4 (CH4exhal or CH4RRf) were associated with shorter MRT and increased motility. These findings are tentatively interpreted as a feedback mechanism in the ruminant digestive tract that aims at mitigating CH4 losses by shortening MRT at higher CH4.


Assuntos
Bovinos/fisiologia , Motilidade Gastrointestinal/fisiologia , Metano/metabolismo , Rúmen/fisiologia , Animais , Fezes , Feminino , Conteúdo Gastrointestinal , Concentração de Íons de Hidrogênio , Mastigação
19.
Arch Anim Nutr ; 69(3): 159-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25963930

RESUMO

The aim of the present experiment was to compare silage prepared from maize having a brown midrib (BMR) mutation with control (CTR) maize to identify their effects on enteric methane emission, digesta mean retention time (MRT), ruminal fermentation and digestibility. In addition, the utility of archaeol present in faecal samples was validated as a proxy for methane production. Seven German Holstein heifers were fed total mixed rations with a maize-silage proportion (either BMR or CTR) of 920 g/kg dry matter (DM) in a change-over design. Heifers were fed boluses with markers to measure MRT; faeces were collected for 7 days and rumen fluid was collected on the penultimate day. Methane emission was measured in respiration chambers on one day. Data were analysed by t-test and regression analysis. DM intake did not differ between the two diets. The apparent digestibility of DM and most nutrients was unaffected by diet type, but apparent digestibility of neutral and acid detergent-fibre was higher in those heifers fed BMR than in those fed CTR. Comparisons between diets revealed no difference in particle or solute MRT in the gastro-intestinal tract and the reticulorumen. Concentrations of short-chain fatty acid and ammonia in rumen fluid and its pH were not affected by silage type. Independent of the mode of expression [l/d, l/kg DM intake, l/kg digested organic matter], methane emissions were not affected by maize-silage type, but with BMR, there was a trend towards lower methane production per unit of digested neutral detergent fibre than there was with CTR silage. Results of the present study show that feeding heifers BMR silage does not increase methane emissions despite a higher fibre digestibility as compared to CTR silage. Therefore, it is assumed that improvements in animal productivity achieved by feeding BMR silage, as some studies have reported, can be obtained without extra environmental cost per unit of milk or meat. Neither faecal archaeol content [µg/g] nor daily amount excreted [mg/d] is suitable to predict methane production in absolute terms [l per day]. However, faecal archaeol content has a certain potential for predicting the methane yield [l per kg DM intake] of individual animals.


Assuntos
Bovinos/fisiologia , Éteres de Glicerila/análise , Metano/biossíntese , Rúmen/metabolismo , Zea mays/classificação , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Digestão , Fezes/química , Feminino , Silagem/análise
20.
Physiol Behav ; 149: 45-52, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26004169

RESUMO

Behavioral observations and small fecal particles compared to other primates indicate that free-ranging proboscis monkeys (Nasalis larvatus) have a strategy of facultative merycism(rumination). In functional ruminants (ruminant and camelids), rumination is facilitated by a particle sorting mechanism in the forestomach that selectively retains larger particles and subjects them to repeated mastication. Using a set of a solute and three particle markers of different sizes (b2, 5 and 8mm),we displayed digesta passage kinetics and measured mean retention times (MRTs) in four captive proboscis monkeys (6­18 kg) and compared the marker excretion patterns to those in domestic cattle. In addition, we evaluated various methods of calculating and displaying passage characteristics. The mean ± SD dry matter intake was 98 ± 22 g kg−0.75 d−1, 68 ± 7% of which was browse. Accounting for sampling intervals in MRT calculation yielded results that were not affected by the sampling frequency. Displaying marker excretion patterns using fecal marker concentrations (rather than amounts) facilitated comparisons with reactor theory outputs and indicated that both proboscis and cattle digestive tracts represent a series of very few tank reactors. However, the separation of the solute and particle marker and the different-sized particle markers, evident in cattle, did not occur in proboscis monkeys, in which all markers moved together, at MRTs of approximately 40 h. The results indicate that the digestive physiology of proboscis monkeys does not show typical characteristics of ruminants, which may explain why merycism is only a facultative strategy in this species.


Assuntos
Adaptação Fisiológica , Colobinae/fisiologia , Fermentação/fisiologia , Trato Gastrointestinal/fisiologia , Eliminação Intestinal/fisiologia , Tamanho da Partícula , Animais , Fezes , Comportamento Alimentar , Feminino , Masculino , Estômago de Ruminante/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...