RESUMO
Cocaine use disorder (CUD) is a worldwide public health problem, associated with severe psychosocial and economic impacts. Currently, no FDA-approved treatment is available for CUD. However, an emerging body of evidence from clinical and preclinical studies suggests that biperiden, an M1 muscarinic receptor antagonist, presents potential therapeutic use for CUD. These studies have suggested that biperiden may reduce the reinforcing effects of cocaine. It is well established that rodents emit 50-kHz ultrasonic vocalizations (USV) in response to natural rewards and stimulant drugs, including cocaine. Nonetheless, the effects of biperiden on the cocaine-induced increase of 50-kHz USV remains unknown. Here, we hypothesized that biperiden could antagonize the acute effects of cocaine administration on rat 50-kHz USV. To test this hypothesis, adult male Wistar rats were divided into four experimental groups: saline, 5 mg/kg biperiden, 10 mg/kg cocaine, and biperiden/cocaine (5 and 10 mg/kg, i.p., respectively). USV and locomotor activity were recorded in baseline and test sessions. As expected, cocaine administration significantly increased the number of 50-kHz USV. Biperiden administration effectively antagonized the increase in 50-kHz USV induced by cocaine. Cocaine administration also increased the emission of trill and mixed 50 kHz USV subtypes and this effect was antagonized by biperiden. Additionally, we showed that biperiden did not affect the cocaine-induced increase in locomotor activity, although biperiden administration per se increased locomotor activity. In conclusion, our findings indicate that administering biperiden acutely reduces the positive affective effects of cocaine, as demonstrated by its ability to inhibit the increase in 50-kHz USV.
Assuntos
Cocaína , Ultrassom , Ratos , Masculino , Animais , Ratos Wistar , Biperideno/farmacologia , Vocalização Animal/fisiologia , Cocaína/farmacologia , LocomoçãoRESUMO
In rats, lisdexamfetamine (LDX) induces manic-like behaviors such as hyperlocomotion and increases in appetitive 50-kHz ultrasonic vocalizations (USV), which are prevented by antimanic drugs, such as lithium. Inhibition of glycogen synthase kinase 3 beta (GSK3ß) and antioxidant activity have been associated with antimanic effects. Thus, the aim of the present study was to evaluate the possible antimanic-like effects of andrographolide (ANDRO), a GSK3ß inhibitor, on LDX-induced hyperlocomotion and 50-kHz USV increases. In addition, the effect of ANDRO was studied on LDX-induced oxidative stress. Lithium was used as positive control. Adult Wistar rats were treated with vehicle, lithium (100 mg/kg i.p., daily) or ANDRO (2 mg/kg i.p., 3 times a week) for 21 days. On the test day, either 10 mg/kg LDX or saline was administered i.p. and USV and locomotor activity were recorded. LDX administration increased the number of 50-kHz calls, as well as locomotor activity. Repeated treatment with lithium or ANDRO prevented these effects of LDX on 50-kHz USV and locomotor activity. LDX increased lipid peroxidation (LPO) levels in rat striatum and both lithium and ANDRO prevented this effect. LPO levels in rat striatum were positively correlated with increases in 50-kHz USV emission as well as hyperlocomotion. In conclusion, the present results indicate that ANDRO has antimanic-like effects, which may be mediated by its antioxidant properties.
Assuntos
Transtorno Bipolar , Ultrassom , Animais , Antimaníacos/farmacologia , Antimaníacos/uso terapêutico , Transtorno Bipolar/induzido quimicamente , Transtorno Bipolar/tratamento farmacológico , Modelos Animais de Doenças , Diterpenos , Mania , Estresse Oxidativo , Ratos , Ratos Wistar , Vocalização AnimalRESUMO
Acute pain that persists for a few days is associated with a reduction in patients' quality of life. Orofacial persistent pain promotes psychological disorders such as anxiety, impairs daily essential activities such as eating, and results in decreased social interaction. Here, we investigated whether rats subjected to orofacial formalin injection or intraoral incision surgery display persistent facial heat hyperalgesia, ongoing pain, anxiety-like behavior, and changes in ultrasonic vocalization. Orofacial formalin injection or intraoral incision caused facial heat hyperalgesia for 3 days compared with saline-injected and sham animals. In addition, both experimental groups showed a reduction in the number of entries and in the time spent in the open arms in the elevated plus maze test on day 3, suggesting that anxiety-like behavior developed as a consequence of persistent pain. At this time point, both groups also displayed a reduction in the number of 50-kHz calls, specifically in the flat subtype, which suggests a decrease in social communication. Moreover, on day 3 after surgery, systemic morphine produced robust conditioned place preference in rats subjected to intraoral incision compared with sham, and the former group also presented increased spontaneous facial grooming, revealing the presence of ongoing pain. Finally, Western blot and immunohistochemistry analysis showed a reduction in tyrosine hydroxylase expression in the nucleus accumbens, which may reflect a decrease in mesolimbic dopaminergic activity. Altogether, the results demonstrate that acute orofacial pain causes prolonged changes in behavioral and affective pain components, which may be related to dopaminergic changes in the nucleus accumbens.
Assuntos
Dor Aguda , Animais , Modelos Animais de Doenças , Dor Facial , Humanos , Hiperalgesia/etiologia , Qualidade de Vida , Ratos , Ratos WistarRESUMO
Mania is characterized by elevated drive and mood but animal models of mania have often neglected elevated mood. Ultrasonic vocalizations (USV) of 50-kHz emitted by rats are thought to index the subject's positive affective state. Fifty-kHz USV emission is increased by amphetamine, an effect blocked by lithium administration. Sleep deprivation (SD) is an environmental model of mania and the present study evaluated SD effects on behavioral activity and USV emission, together with the impact of lithium treatment. Adult rats were submitted to 24h or 72h SD, and locomotor activity and USV emission were assessed. To test their sensitivity to a standard antimanic drug, these behavioral parameters were also evaluated after acute administration of lithium carbonate (25, 50 or 100â¯mg/kg, i.p.). Striatal monoamine content was measured post-mortem. SD (24h and 72h) led to increased locomotor activity, rearing behavior and 50-kHz USV emission, together with a change in the call profile characterized by an increase in the percentage of frequency-modulated 50-kHz USV, which may indicate the mania-like consequences of SD. Importantly, all SD effects were reverted by lithium administration. SD also led to a decrease in dopamine content in the ventral striatum, while increasing dopamine turnover. In conclusion, SD increased 50-kHz USV emission, an effect prevented by acute lithium administration. This suggests 50-kHz USV as a new marker for mania-like elevated mood, which shows construct validity (associated with increased dopaminergic tone), face validity (reflecting increased positive affect) and predictive validity (high sensitivity to lithium treatment).
Assuntos
Transtorno Bipolar/etiologia , Privação do Sono/complicações , Vocalização Animal/fisiologia , Animais , Antimaníacos/uso terapêutico , Monoaminas Biogênicas/metabolismo , Transtorno Bipolar/tratamento farmacológico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Carbonato de Lítio/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Comportamento Materno/efeitos dos fármacos , Ratos , Ratos Wistar , Fatores de Tempo , Estriado Ventral/efeitos dos fármacos , Estriado Ventral/metabolismoRESUMO
RATIONALE: We have recently shown that the benzodiazepine diazepam inhibits dopamine release in the NAc and blocks the increased release of dopamine induced by DL-amphetamine. Rewarding stimuli and many drugs of abuse can induce dopamine release in the nucleus accumbens as well as 50-kHz ultrasonic vocalizations (USVs) in rats. OBJECTIVES: In the present study, we tested the hypothesis that diazepam can also block the increase in locomotor activity and USVs elicited by amphetamine. METHODS: Fifty-kilohertz USVs, stereotypy, and locomotor behavior were scored in adult male Wistar rats treated with i.p. injections of saline, 3 mg/kg DL-amphetamine, 2 mg/kg diazepam, 0.2 mg/kg haloperidol, or a combination of these drugs. RESULTS: In agreement with previous studies, amphetamine caused significant increases in the number of USV calls, stereotypies, and locomotor activity. The D2 dopamine receptor antagonist haloperidol blocked the effects of amphetamine on USVs, stereotypy, and locomotor activity. Diazepam blocked the effect of amphetamine on USV and stereotypy, but not on horizontal locomotion. CONCLUSIONS: These results suggest that diazepam blocks the rewarding effect of amphetamine. This finding is promising for basic research regarding treatments of substance use disorders and evaluation of the impact of benzodiazepines on motivation.
Assuntos
Anfetamina/farmacologia , Diazepam/farmacologia , Locomoção/efeitos dos fármacos , Comportamento Estereotipado/efeitos dos fármacos , Ondas Ultrassônicas , Vocalização Animal/efeitos dos fármacos , Anfetamina/antagonistas & inibidores , Animais , Dopamina/farmacologia , Dopaminérgicos/farmacologia , Moduladores GABAérgicos/farmacologia , Locomoção/fisiologia , Masculino , Motivação/efeitos dos fármacos , Motivação/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de Dopamina D1/antagonistas & inibidores , Comportamento Estereotipado/fisiologia , Vocalização Animal/fisiologiaRESUMO
Drug-induced hyperlocomotion in rodents is frequently used as a behavioral model for mania. However, the use of locomotor activity as the single parameter in these animal models of mania may pose some limitations for developing new pharmacological treatments. Thus, alternative behavioral markers are required. Fifty-kHz ultrasonic vocalizations (USV), which are thought to represent positive affect, are increased by the administration of the psychostimulant d-amphetamine, an effect that can be prevented by lithium treatment, the gold standard antimanic drug for treating bipolar disorder. The aim of this study was to evaluate 50-kHz USV in two other pharmacological-induced animal models of mania: ketamine (KET)- and lisdexamfetamine (LDX)-induced hyperlocomotion. After systemic injection of LDX (10mg/kg, ip), racemic-ketamine (25mg/kg, ip) or S-ketamine (25mg/kg, ip), locomotor activity and 50-kHz USV emission were evaluated in rats. Furthermore, the effects of an antimanic treatment, namely lithium carbonate (100mg/kg, ip), on LDX-induced 50-kHz USV and hyperlocomotion were tested. Rats treated with racemic KET and S-KET showed increased locomotor activity, but these drug treatments did not significantly affect 50-kHz USV emission rates. On the other hand, LDX administration increased both locomotor activity and 50-kHz USV with both effects being reversed by lithium administration. The present findings suggest that 50-kHz USV can differentiate between drug-induced models of mania, which may represent different types of manic episodes. Thus, measuring 50-kHz USV might serve as an additional valuable behavioral variable to assess mania-like phenotypes in rat models.
Assuntos
Transtorno Bipolar/induzido quimicamente , Transtorno Bipolar/tratamento farmacológico , Estimulantes do Sistema Nervoso Central/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipercinese/induzido quimicamente , Hipercinese/tratamento farmacológico , Ketamina/farmacologia , Dimesilato de Lisdexanfetamina/farmacologia , Vocalização Animal/efeitos dos fármacos , Animais , Antimaníacos/farmacologia , Antimaníacos/uso terapêutico , Transtorno Bipolar/psicologia , Modelos Animais de Doenças , Hipercinese/psicologia , Carbonato de Lítio/farmacologia , Carbonato de Lítio/uso terapêutico , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos WistarRESUMO
RATIONALE: Animal models aimed to mimic mania have in common the lack of genuine affective parameters. Although rodent amphetamine-induced hyperlocomotion is a frequently used behavioral model of mania, locomotor activity is a rather unspecific target for developing new pharmacological therapies, and does not necessarily constitute a cardinal symptom in bipolar disorder (BD). Hence, alternative behavioral markers sensitive to stimulants are required. OBJECTIVES: Since D-amphetamine induces appetitive 50-kHz ultrasonic vocalizations (USV) in rats, we asked whether established or potential antimanic drugs would inhibit this effect, thereby possibly complementing traditional analysis of locomotor activity. METHODS: Amphetamine-treated rats (2.5 mg/kg) were systemically administered with the antimanic drugs lithium (100 mg/kg) and tamoxifen (1 mg/kg). Since protein kinase C (PKC) activity has been implicated in the pathophysiology of bipolar disorder and the biochemical effects of mood stabilizers, the new PKC inhibitor myricitrin (10, 30 mg/kg) was also evaluated. RESULTS: We demonstrate for the first time that drugs with known or potential antimanic activity were effective in reversing amphetamine-induced appetitive 50-kHz calls. Treatments particularly normalized amphetamine-induced increases of frequency-modulated calls, a subtype presumably indicative of positive affect in the rat. CONCLUSIONS: Our findings suggest that amphetamine-induced 50-kHz calls might constitute a marker for communicating affect that provides a useful model of exaggerated euphoric mood and pressured speech. The antimanic-like effects of the PKC inhibitors tamoxifen and myricitrin support the predictive and etiological validity of both drugs in this model and highlight the role of PKC signaling as a promising target to treat mania and psychosis-related disorders.
Assuntos
Antimaníacos/farmacologia , Transtorno Bipolar/tratamento farmacológico , Dextroanfetamina/farmacologia , Proteína Quinase C/antagonistas & inibidores , Animais , Transtorno Bipolar/induzido quimicamente , Estimulantes do Sistema Nervoso Central/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Flavonoides/farmacologia , Carbonato de Lítio/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologia , Vocalização Animal/efeitos dos fármacosRESUMO
We conducted an experiment in which hedonia, salience and prediction error hypotheses predicted different patterns of dopamine (DA) release in the striatum during learning of conditioned avoidance responses (CARs). The data strongly favor the latter hypothesis. It predicts that during learning of the 2-way active avoidance CAR task, positive prediction errors generated when rats do not receive an anticipated footshock (which is better than expected) cause DA release that reinforces the instrumental avoidance action. In vivo microdialysis in the rat striatum showed that extracellular DA concentration increased during early CAR learning and decreased throughout training returning to baseline once the response was well learned. In addition, avoidance learning was proportional to the degree of DA release. Critically, exposure of rats to the same stimuli but in an unpredictable, unavoidable, and inescapable manner, did not produce alterations from baseline DA levels as predicted by the prediction error but not hedonic or salience hypotheses. In addition, rats with a partial lesion of substantia nigra DA neurons, which did not show increased DA levels during learning, failed to learn this task. These data represent clear and unambiguous evidence that it was the factor positive prediction error, and not hedonia or salience, which caused increase in the tonic level of striatal DA and which reinforced learning of the instrumental avoidance response.
Assuntos
Aprendizagem da Esquiva/fisiologia , Condicionamento Operante/fisiologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Animais , Eletrochoque , Masculino , Microdiálise , Neurônios/metabolismo , Ratos , Ratos WistarRESUMO
Motor impairments of Parkinson's disease (PD) appear only after the loss of more than 70% of the DAergic neurons of the substantia nigra pars compacta (SNc). An earlier phase of this disease can be modeled in rats that received a unilateral infusion of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) into the SNc. Though these animals do not present gross motor impairments, they rotate towards the lesioned side when challenged with DAergic drugs, like amphetamine and apomorphine. The present study aimed to test whether these effects occur because the drugs disrupt compensatory mechanisms that keep extracellular levels of dopamine in the striatum (DA(E)) unchanged. This hypothesis was tested by an in vivo microdialysis study in awake rats with two probes implanted in the right and left striatum. Undrugged rats did not present turning behaviour and their basal DA(E) did not differ between the lesioned and sham-lesioned sides. However, after apomorphine treatment, DA(E) decreased in both sides, but to a larger extent in the lesioned side at the time the animals started ipsiversive turning behaviour. After amphetamine challenge, DA(E) increased in both sides, becoming significantly higher in the non-lesioned side at the time the animals started ipsiversive turning behaviour. These results are in agreement with the hypothesis that absence of gross motor impairments in this rat model of early phase PD depends on maintenance of extracellular DA by mechanisms that may be disrupted by events demanding its alteration to higher or lower levels.