Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
Hum Genet ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787418

RESUMO

Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.

2.
Am J Med Genet A ; 194(6): e63514, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38329159

RESUMO

Genetics has become a critical component of medicine over the past five to six decades. Alongside genetics, a relatively new discipline, dysmorphology, has also begun to play an important role in providing critically important diagnoses to individuals and families. Both have become indispensable to unraveling rare diseases. Almost every medical specialty relies on individuals experienced in these specialties to provide diagnoses for patients who present themselves to other doctors. Additionally, both specialties have become reliant on molecular geneticists to identify genes associated with human disorders. Many of the medical geneticists, dysmorphologists, and molecular geneticists traveled a circuitous route before arriving at the position they occupied. The purpose of collecting the memoirs contained in this article was to convey to the reader that many of the individuals who contributed to the advancement of genetics and dysmorphology since the late 1960s/early 1970s traveled along a journey based on many chances taken, replying to the necessities they faced along the way before finding full enjoyment in the practice of medical and human genetics or dysmorphology. Additionally, and of equal importance, all exhibited an ability to evolve with their field of expertise as human genetics became human genomics with the development of novel technologies.


Assuntos
Genética Médica , Humanos , História do Século XX , História do Século XXI , Genética Humana
4.
Clin Genet ; 105(2): 173-184, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37899624

RESUMO

Duplication of all genes associated with X-linked intellectual disability (XLID) have been reported but the majority of the duplications include more than one XLID gene. It is exceptional for whole XLID gene duplications to cause the same phenotype as sequence variants or deletions of the same gene. Duplication of PLP1, the gene associated with Pelizaeus-Merzbacher syndrome, is the most notable duplication of this type. More commonly, duplication of XLID genes results in very different phenotypes than sequence alterations or deletions. Duplication of MECP2 is widely recognized as a duplication of this type, but a number of others exist. The phenotypes associated with gene duplications are often milder than those caused by deletions and sequence variants. Among some duplications that are clinically significant, marked skewing of X-inactivation in female carriers has been observed. This report describes the phenotypic consequences of duplication of 22 individual XLID genes, of which 10 are described for the first time.


Assuntos
Deficiência Intelectual , Humanos , Feminino , Deficiência Intelectual/genética , Genes Ligados ao Cromossomo X/genética , Duplicação Gênica , Inativação do Cromossomo X/genética , Mutação
5.
J Lipid Res ; 65(2): 100495, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38160757

RESUMO

Angiopoietin-like protein (ANGPTL) complexes 3/8 and 4/8 are established inhibitors of LPL and novel therapeutic targets for dyslipidemia. However, the effects of regular exercise on ANGPTL3/8 and ANGPTL4/8 are unknown. We characterized ANGPTL3/8 and ANGPTL4/8 and their relationship with in vivo measurements of lipase activities and cardiometabolic traits before and after a 5-month endurance exercise training intervention in 642 adults from the HERITAGE (HEalth, RIsk factors, exercise Training And GEnetics) Family Study. At baseline, higher levels of both ANGPTL3/8 and ANGPTL4/8 were associated with a worse lipid, lipoprotein, and cardiometabolic profile, with only ANGPTL3/8 associated with postheparin LPL and HL activities. ANGPTL3/8 significantly decreased with exercise training, which corresponded with increases in LPL activity and decreases in HL activity, plasma triglycerides, apoB, visceral fat, and fasting insulin (all P < 5.1 × 10-4). Exercise-induced changes in ANGPTL4/8 were directly correlated to concomitant changes in total cholesterol, LDL-C, apoB, and HDL-triglycerides and inversely related to change in insulin sensitivity index (all P < 7.0 × 10-4). In conclusion, exercise-induced decreases in ANGPTL3/8 and ANGPTL4/8 were related to concomitant improvements in lipase activity, lipid profile, and cardiometabolic risk factors. These findings reveal the ANGPTL3-4-8 model as a potential molecular mechanism contributing to adaptations in lipid metabolism in response to exercise training.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Doenças Cardiovasculares , Adulto , Humanos , Proteínas Semelhantes a Angiopoietina/metabolismo , Triglicerídeos/metabolismo , Lipase , Exercício Físico , Apolipoproteínas B , Lipase Lipoproteica/genética , Proteína 4 Semelhante a Angiopoietina
6.
Appl Opt ; 62(32): 8517-8528, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38037964

RESUMO

A mid-infrared (MIR) laser absorption spectroscopy (LAS) sensor was developed for temperature, CO, NO, and C O 2 measurements at 5 kHz in engine-out exhaust. It used fiber-coupled quantum cascade lasers (QCLs) for measuring CO and NO, and an interband cascade laser (ICL) for measuring C O 2. Validation tests in a heated gas cell confirmed that the LAS measurements of CO, C O 2, NO, and temperature are accurate to within 4.8%, 5.1%, 4.6%, and 3.1%, respectively, at 1-2 atm and 300-1000 K. The LAS sensor was applied to characterize the engine-out exhaust gas of an 8-cylinder gasoline engine in a light-duty truck at operating conditions where commercial instruments lack sufficient time response to quantify important emission dynamics.

8.
Am J Hum Genet ; 110(12): 2015-2028, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37979581

RESUMO

We examined more than 97,000 families from four neurodevelopmental disease cohorts and the UK Biobank to identify phenotypic and genetic patterns in parents contributing to neurodevelopmental disease risk in children. We identified within- and cross-disorder correlations between six phenotypes in parents and children, such as obsessive-compulsive disorder (R = 0.32-0.38, p < 10-126). We also found that measures of sub-clinical autism features in parents are associated with several autism severity measures in children, including biparental mean Social Responsiveness Scale scores and proband Repetitive Behaviors Scale scores (regression coefficient = 0.14, p = 3.38 × 10-4). We further describe patterns of phenotypic similarity between spouses, where spouses show correlations for six neurological and psychiatric phenotypes, including a within-disorder correlation for depression (R = 0.24-0.68, p < 0.001) and a cross-disorder correlation between anxiety and bipolar disorder (R = 0.09-0.22, p < 10-92). Using a simulated population, we also found that assortative mating can lead to increases in disease liability over generations and the appearance of "genetic anticipation" in families carrying rare variants. We identified several families in a neurodevelopmental disease cohort where the proband inherited multiple rare variants in disease-associated genes from each of their affected parents. We further identified parental relatedness as a risk factor for neurodevelopmental disorders through its inverse relationship with variant pathogenicity and propose that parental relatedness modulates disease risk by increasing genome-wide homozygosity in children (R = 0.05-0.26, p < 0.05). Our results highlight the utility of assessing parent phenotypes and genotypes toward predicting features in children who carry rare variably expressive variants and implicate assortative mating as a risk factor for increased disease severity in these families.


Assuntos
Transtorno Autístico , Transtorno Bipolar , Criança , Humanos , Virulência , Pais , Família , Transtorno Autístico/genética , Transtorno Bipolar/genética
9.
Physiol Genomics ; 55(11): 517-543, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37661925

RESUMO

Submaximal exercise capacity is an indicator of cardiorespiratory fitness with clinical and public health implications. Submaximal exercise capacity and its response to exercise programs are characterized by heritability levels of about 40%. Using physical working capacity (power output) at a heart rate of 150 beats/min (PWC150) as an indicator of submaximal exercise capacity in subjects of the HERITAGE Family Study, we have undertaken multi-omics and in silico explorations of the underlying biology of PWC150 and its response to 20 wk of endurance training. Our goal was to illuminate the biological processes and identify panels of genes associated with human variability in intrinsic PWC150 (iPWC150) and its trainability (dPWC150). Our bioinformatics approach was based on a combination of genome-wide association, skeletal muscle gene expression, and plasma proteomics and metabolomics experiments. Genes, proteins, and metabolites showing significant associations with iPWC150 or dPWC150 were further queried for the enrichment of biological pathways. We compared genotype-phenotype associations of emerging candidate genes with reported functional consequences of gene knockouts in mouse models. We investigated the associations between DNA variants and multiple muscle and cardiovascular phenotypes measured in HERITAGE subjects. Two panels of prioritized genes of biological relevance to iPWC150 (13 genes) and dPWC150 (6 genes) were identified, supporting the hypothesis that genes and pathways associated with iPWC150 are different from those underlying dPWC150. Finally, the functions of these genes and pathways suggested that human variation in submaximal exercise capacity is mainly driven by skeletal muscle morphology and metabolism and red blood cell oxygen-carrying capacity.NEW & NOTEWORTHY Multi-omics and in silico explorations of the genes and underlying biology of submaximal exercise capacity and its response to 20 wk of endurance training were undertaken. Prioritized genes were identified: 13 genes for variation in submaximal exercise capacity in the sedentary state and 5 genes for the response level to endurance training, with no overlap between them. Genes and pathways associated with submaximal exercise capacity in the sedentary state are different from those underlying trainability.


Assuntos
Exercício Físico , Estudo de Associação Genômica Ampla , Camundongos , Animais , Humanos , Exercício Físico/fisiologia , Fenótipo , Genoma , Biologia , Resistência Física/genética , Consumo de Oxigênio/genética
10.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445892

RESUMO

This study characterizes the DNA methylation patterns specific to fragile X syndrome (FXS) with a full mutation (FM > 200 CGGs), premutation (PM 55-199 CGGs), and X inactivation in blood and brain tissues at the 3' boundary of the FMR1 promoter. Blood was analyzed from 95 controls and 462 individuals (32% males) with FM and PM alleles. Brain tissues (62% males) were analyzed from 12 controls and 4 with FXS. There was a significant increase in intron 1 methylation, extending to a newly defined 3' epigenetic boundary in the FM compared with that in the control and PM groups (p < 0.0001), and this was consistent between the blood and brain tissues. A distinct intron 2 site showed a significant decrease in methylation for the FXS groups compared with the controls in both sexes (p < 0.01). In all female groups, most intron 1 (but not intron 2 sites) were sensitive to X inactivation. In all PM groups, methylation at the 3' epigenetic boundary and the proximal sites was significantly decreased compared with that in the control and FM groups (p < 0.0001). In conclusion, abnormal FMR1 intron 1 and 2 methylation that was sensitive to X inactivation in the blood and brain tissues provided a novel avenue for the detection of PM and FM alleles through DNA methylation analysis.


Assuntos
Síndrome do Cromossomo X Frágil , Masculino , Humanos , Feminino , Síndrome do Cromossomo X Frágil/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Metilação de DNA , Mutação , Inativação do Cromossomo X
11.
medRxiv ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37292616

RESUMO

We examined more than 38,000 spouse pairs from four neurodevelopmental disease cohorts and the UK Biobank to identify phenotypic and genetic patterns in parents associated with neurodevelopmental disease risk in children. We identified correlations between six phenotypes in parents and children, including correlations of clinical diagnoses such as obsessive-compulsive disorder (R=0.31-0.49, p<0.001), and two measures of sub-clinical autism features in parents affecting several autism severity measures in children, such as bi-parental mean Social Responsiveness Scale (SRS) scores affecting proband SRS scores (regression coefficient=0.11, p=0.003). We further describe patterns of phenotypic and genetic similarity between spouses, where spouses show both within- and cross-disorder correlations for seven neurological and psychiatric phenotypes, including a within-disorder correlation for depression (R=0.25-0.72, p<0.001) and a cross-disorder correlation between schizophrenia and personality disorder (R=0.20-0.57, p<0.001). Further, these spouses with similar phenotypes were significantly correlated for rare variant burden (R=0.07-0.57, p<0.0001). We propose that assortative mating on these features may drive the increases in genetic risk over generations and the appearance of "genetic anticipation" associated with many variably expressive variants. We further identified parental relatedness as a risk factor for neurodevelopmental disorders through its inverse correlations with burden and pathogenicity of rare variants and propose that parental relatedness drives disease risk by increasing genome-wide homozygosity in children (R=0.09-0.30, p<0.001). Our results highlight the utility of assessing parent phenotypes and genotypes in predicting features in children carrying variably expressive variants and counseling families carrying these variants.

12.
Cureus ; 15(4): e38021, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37228546

RESUMO

Prosthetic valve endocarditis (PVE) is an uncommon complication after heart valve replacement surgery that can result in increased morbidity and mortality. Current guidelines for management of PVE recommend antibiotic therapy followed by surgical valve replacement. The number of aortic valve replacements is expected to rise in the coming years with the expanded indications for use of transcatheter aortic valve replacement (TAVR) in patients with low, intermediate, and high surgical risk, as well as in patients with a failed aortic bioprosthetic valve. Current guidelines do not address the use of valve-in-valve (ViV) TAVR for management of PVE in patients who are at high risk for surgical intervention. The authors present a case of a patient with aortic valve PVE after surgical aortic valve replacement (SAVR); he was treated with valve-in-valve (ViV) TAVR due to the high surgical risk. The patient was discharged, but he returned to the hospital with PVE and valve dehiscence 14 months after ViV TAVR, after which he successfully underwent re-operative SAVR.

13.
Med Sci (Basel) ; 11(2)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37092498

RESUMO

Recent identification of four additional polyaminopathies, including Bachmann-Bupp syndrome, have benefited from previous research on Snyder-Robinson syndrome in order to advance from research to treatment more quickly. As a result of the discovery of these conditions, the potential for treatment within this pathway, and for other possible unidentified polyaminopathies, the International Center for Polyamine Disorders (ICPD) was created to help promote understanding of these conditions, research opportunities, and appropriate care for families. This case study provides insights from two new patients diagnosed with Bachmann-Bupp syndrome, further expanding our understanding of this ultra-rare condition, as well as a general discussion about other known polyaminopathies. This work also presents considerations for collaborative research efforts across these conditions, along with others that are likely to be identified in time, and outlines the role that the ICPD hopes to fill as more patients with these polyaminopathies continue to be identified and diagnosed.


Assuntos
Eflornitina , Poliaminas , Humanos , Poliaminas/metabolismo
14.
Dis Model Mech ; 16(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37083955

RESUMO

Split hand/foot malformation (SHFM) is a rare limb abnormality with clefting of the fingers and/or toes. For many individuals, the genetic etiology is unknown. Through whole-exome and targeted sequencing, we detected three novel variants in a gene encoding a transcription factor, PRDM1, that arose de novo in families with SHFM or segregated with the phenotype. PRDM1 is required for limb development; however, its role is not well understood and it is unclear how the PRDM1 variants affect protein function. Using transient and stable overexpression rescue experiments in zebrafish, we show that the variants disrupt the proline/serine-rich and DNA-binding zinc finger domains, resulting in a dominant-negative effect. Through gene expression assays, RNA sequencing, and CUT&RUN in isolated pectoral fin cells, we demonstrate that Prdm1a directly binds to and regulates genes required for fin induction, outgrowth and anterior/posterior patterning, such as fgfr1a, dlx5a, dlx6a and smo. Taken together, these results improve our understanding of the role of PRDM1 in the limb gene regulatory network and identified novel PRDM1 variants that link to SHFM in humans.


Assuntos
Deformidades Congênitas dos Membros , Peixe-Zebra , Animais , DNA , Deformidades Congênitas dos Membros/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo , Fatores de Transcrição/genética , Peixe-Zebra/genética , Dedos de Zinco
15.
Res Sq ; 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36993381

RESUMO

Intellectual disability (ID) is a common neurodevelopmental disorder characterized by significantly impaired intellectual and adaptive functioning. X-linked ID (XLID) disorders, caused by defects in genes on the X chromosome, affect 1.7 out of 1,000 males. Employing exome sequencing, we identified three missense mutations (c.475C>G; p.H159D, c.1373C>A; p.T458N, and c.1585G>A; p.E529K) in the SRPK3 gene in seven XLID patients from three independent families. Clinical features common to the patients are intellectual disability, agenesis of the corpus callosum, abnormal smooth pursuit eye movement, and ataxia. SRPK proteins are known to be involved in mRNA processing and, recently, synaptic vesicle and neurotransmitter release. In order to validate SRPK3 as a novel XLID gene, we established a knockout (KO) model of the SRPK3 orthologue in zebrafish. In day 5 of larval stage, KO zebrafish showed significant defects in spontaneous eye movement and swim bladder inflation. In adult KO zebrafish, we found agenesis of cerebellar structures and impairments in social interaction. These results suggest an important role of SRPK3 in eye movements, which might reflect learning problems, intellectual disability, and other psychiatric disorders.

16.
Eur J Hum Genet ; 31(8): 879-886, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36797465

RESUMO

The challenges and ambiguities in providing an accurate diagnosis for patients with neurodevelopmental disorders have led researchers to apply epigenetics as a technique to validate the diagnosis provided based on the clinical examination and genetic testing results. Genome-wide DNA methylation analysis has recently been adapted for clinical testing of patients with genetic neurodevelopmental disorders. In this paper, preliminary data demonstrating a DNA methylation signature for Renpenning syndrome (RENS1 - OMIM 309500), which is an X-linked recessive neurodevelopmental disorder caused by variants in polyglutamine-binding protein 1 (PQBP1) is reported. The identified episignature was then utilized to construct a highly sensitive and specific binary classification model. Besides providing evidence for the existence of a DNA methylation episignature for Renpenning syndrome, this study increases the knowledge of the molecular mechanisms related to the disease. Moreover, the availability of more subjects in future may facilitate the establishment of an episignature that can be utilized for diagnosis in a clinical setting and for reclassification of variants of unknown clinical significance.


Assuntos
Paralisia Cerebral , Deficiência Intelectual Ligada ao Cromossomo X , Humanos , Metilação de DNA , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Deficiência Intelectual Ligada ao Cromossomo X/genética , Paralisia Cerebral/genética , Epigênese Genética , Proteínas de Ligação a DNA/genética
17.
Appl Opt ; 62(6): 1598-1609, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36821325

RESUMO

A laser absorption spectroscopy diagnostic integrated within a hardened optical probe was used to measure temperature and water mole fraction at 500 kHz in post-detonation fireballs of explosives. In the experiments, an exploding-bridgewire detonator initiated a 25 g hemisphere of explosive (N5 or PETN). This produced a hemispherical fireball that traveled radially towards a hardened measurement probe. The probe contained a pressure transducer and optical equipment to pitch fiber-coupled laser light across a 12.6 cm gap onto a detector. Tunable diode lasers emitting near 7185.6 and 6806c m -1 were used to measure the absorbance spectrum of H 2 O utilizing peak-picking scanned-wavelength-modulation spectroscopy with a scan frequency of 500 kHz and modulation frequencies of 35 and 45.5 MHz, respectively. This enabled measurements of temperature and X H 2 O in the shock-heated air and trailing fireball at 500 kHz. Time histories of pressure, temperature, and H 2 O mole fraction were acquired at different standoff distances to quantify how the fireball evolved in space and time as well as to compare measured quantities between PETN and N5 fireballs. The standard deviation of temperature and X H 2 O during one representative test were found to be 17 K (1.3%) and 0.011 (5%), respectively. These measurements demonstrate this diagnostic's ability to provide rapid and reliable measurements in harsh, highly transient post-detonation environments produced by solid explosives.

18.
Am J Med Genet A ; 191(1): 144-159, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36300573

RESUMO

Genes that are involved in the transcription process, mitochondrial function, glycoprotein metabolism, and ubiquitination dominate the list of 21 new genes associated with X-linked intellectual disability since the last update in 2017. The new genes were identified by sequencing of candidate genes (2), the entire X-chromosome (2), the whole exome (15), or the whole genome (2). With these additions, 42 (21%) of the 199 named XLID syndromes and 27 (25%) of the 108 numbered nonsyndromic XLID families remain to be resolved at the molecular level. Although the pace of discovery of new XLID genes has slowed during the past 5 years, the density of genes on the X chromosome that cause intellectual disability still appears to be twice the density of intellectual disability genes on the autosomes.


Assuntos
Genes Ligados ao Cromossomo X , Deficiência Intelectual , Humanos , Mutação , Genes Ligados ao Cromossomo X/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Exoma , Linhagem
19.
Clin Genet ; 103(2): 167-178, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36250278

RESUMO

ZC4H2 (MIM# 300897) is a nuclear factor involved in various cellular processes including proliferation and differentiation of neural stem cells, ventral spinal patterning and osteogenic and myogenic processes. Pathogenic variants in ZC4H2 have been associated with Wieacker-Wolff syndrome (MIM# 314580), an X-linked neurodevelopmental disorder characterized by arthrogryposis, development delay, hypotonia, feeding difficulties, poor growth, skeletal abnormalities, and dysmorphic features. Zebrafish zc4h2 null mutants recapitulated the human phenotype, showed complete loss of vsx2 expression in brain, and exhibited abnormal swimming and balance problems. Here we report 7 new patients (four males and three females) with ZC4H2-related disorder from six unrelated families. Four of the 6 ZC4H2 variants are novel: three missense variants, designated as c.142T>A (p.Tyr48Asn), c.558G>A (p.Met186Ile) and c.602C>T (p.Pro201Leu), and a nonsense variant, c.618C>A (p.Cys206*). Two variants were previously reported : a nonsense variant c.199C>T (p.Arg67*) and a splice site variant (c.225+5G>A). Five patients were on the severe spectrum of clinical findings, two of whom had early death. The male patient harboring the p.Met186Ile variant and the female patient that carries the p.Pro201Leu variant have a relatively mild phenotype. Of note, 4/7 patients had a tethered cord that required a surgical repair. We also demonstrate and discuss previously under-recognized phenotypic features including sleep apnea, arrhythmia, hypoglycemia, and unexpected early death. To study the effect of the missense variants, we performed microinjection of human ZC4H2 wild-type or variant mRNAs into zc4h2 null mutant zebrafish embryos. The p.Met186Ile mRNA variant was able to partially rescue vsx2 expression while p.Tyr48Asn and p.Pro201Leu mRNA variants were not. However, swimming and balance problems could not be rescued by any of these variants. These results suggest that the p.Met186Ile is a hypomorphic allele. Our work expands the genotypes and phenotypes associated with ZC4H2-related disorder and demonstrates that the zebrafish system is a reliable method to determine the pathogenicity of ZC4H2 variants.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X , Defeitos do Tubo Neural , Peixe-Zebra , Animais , Feminino , Humanos , Masculino , Alelos , Doenças Genéticas Ligadas ao Cromossomo X/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas do Tecido Nervoso/genética , Defeitos do Tubo Neural/genética , Proteínas Nucleares/genética , Fenótipo , Prevalência , Peixe-Zebra/genética
20.
Front Psychiatry ; 14: 1327802, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288059

RESUMO

Introduction: X-linked PTCHD1 gene has recently been pointed as one of the most interesting candidates for involvement in neurodevelopmental disorders (NDs), such as intellectual disability (ID) and autism spectrum disorder (ASD). PTCHD1 encodes the patched domain-containing protein 1 (PTCHD1), which is mainly expressed in the developing brain and adult brain tissues. To date, major studies have focused on the biological function of the PTCHD1 gene, while the mechanisms underlying neuronal alterations and the cognitive-behavioral phenotype associated with mutations still remain unclear. Methods: With the aim of incorporating information on the clinical profile of affected individuals and enhancing the characterization of the genotype-phenotype correlation, in this study, we analyze the clinical features of four individuals (two children and two adults) in which array-CGH detected a PTCHD1 deletion or in which panel for screening non-syndromal XLID (X-linked ID) detected a PTCHD1 gene variant. We define the neuropsychological and psychopathological profiles, providing quantitative data from standardized evaluations. The assessment consisted of clinical observations, structured interviews, and parent/self-reported questionnaires. Results: Our descriptive analysis align with previous findings on the involvement of the PTCHD1 gene in NDs. Specifically, our patients exhibited a clinical phenotype characterized by psychomotor developmental delay- ID of varying severity. Interestingly, while ID during early childhood was associated with autistic-like symptomatology, this interrelation was no longer observed in the adult subjects. Furthermore, our cohort did not display peculiar dysmorphic features, congenital abnormalities or comorbidity with epilepsy. Discussion: Our analysis shows that the psychopathological and behavioral comorbidities along with cognitive impairment interfere with development, therefore contributing to the severity of disability associated with PTCHD1 gene mutation. Awareness of this profile by professionals and caregivers can promote prompt diagnosis as well as early cognitive and occupational enhancement interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...