Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(11): eadf7595, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36921059

RESUMO

Thermal fluctuations often impose both fundamental and practical measurement limits on high-performance sensors, motivating the development of techniques that bypass the limitations imposed by thermal noise outside cryogenic environments. Here, we theoretically propose and experimentally demonstrate a measurement method that reduces the effective transducer temperature and improves the measurement precision of a dynamic impulse response signal. Thermal noise-limited, integrated cavity optomechanical atomic force microscopy probes are used in a photothermal-induced resonance measurement to demonstrate an effective temperature reduction by a factor of ≈25, i.e., from room temperature down as low as ≈12 K, without cryogens. The method improves the experimental measurement precision and throughput by >2×, approaching the theoretical limit of ≈3.5× improvement for our experimental conditions. The general applicability of this method to dynamic measurements leveraging thermal noise-limited harmonic transducers will have a broad impact across a variety of measurement platforms and scientific fields.

2.
Anal Chem ; 94(38): 13126-13135, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36099442

RESUMO

Photothermal induced resonance (PTIR), also known as AFM-IR, enables nanoscale infrared (IR) imaging and spectroscopy by using the tip of an atomic force microscope to transduce the local photothermal expansion and contraction of a sample. The signal transduction efficiency and spatial resolution of PTIR depend on a multitude of sample, cantilever, and illumination source parameters in ways that are not yet well understood. Here, we elucidate and separate the effects of laser pulse length, pulse shape, sample thermalization time (τ), interfacial thermal conductance, and cantilever detection frequency by devising analytical and numerical models that link a sample's photothermal excitations to the cantilever dynamics over a broad bandwidth (10 MHz). The models indicate that shorter laser pulses excite probe oscillations over broader bandwidths and should be preferred for measuring samples with shorter thermalization times. Furthermore, we show that the spatial resolution critically depends on the interfacial thermal conductance between dissimilar materials and improves monotonically, but not linearly, with increasing cantilever detection frequencies. The resolution can be enhanced for samples that do not fully thermalize between pulses (i.e., laser repetition rates ≳ 1/3τ) as the probed depth becomes smaller than the film thickness. We believe that the insights presented here will accelerate the adoption and impact of PTIR analyses across a wide range of applications by informing experimental designs and measurement strategies as well as by guiding future technical advances.


Assuntos
Lasers , Luz , Microscopia de Força Atômica/métodos , Espectrofotometria Infravermelho/métodos , Vibração
3.
Chem Soc Rev ; 51(13): 5248-5267, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35616225

RESUMO

Infrared (IR) spectroscopy is a broadly applicable, composition sensitive analytical technique. By leveraging the high spatial resolution of atomic force microscopy (AFM), the photothermal effect, and wavelength-tunable lasers, AFM-IR enables IR spectroscopy and imaging with nanoscale (< 10 nm) resolution. The transduction of a sample's photothermal expansion by an AFM probe tip ensures the proportionality between the AFM-IR signal and the sample absorption coefficient, producing images and spectra that are comparable to far-field IR databases and easily interpreted. This convergence of characteristics has spurred robust research efforts to extend AFM-IR capabilities and, in parallel, has enabled AFM-IR to impact numerous fields. In this tutorial review, we present the latest technical breakthroughs in AFM-IR spectroscopy and imaging and discuss its working principles, distinctive characteristics, and best practices for different AFM-IR measurement paradigms. Central to this review, appealing to both expert practitioners and novices alike, is the meticulous understanding of AFM-IR signal transduction, which is essential to take full advantage of AFM-IR capabilities. Here, we critically compile key information and discuss instructive experiments detailing AFM-IR signal transduction and provide guidelines linking experimental parameters to the measurement sensitivity, lateral resolution, and probed depth. Additionally, we provide in-depth tutorials on the most employed AFM-IR variants (resonance-enhanced and tapping mode AFM-IR), discussing technical details and representative applications. Finally, we briefly review recently developed AFM-IR modalities (peak force tapping IR and surface sensitivity mode) and provide insights on the next exciting opportunities and prospects for this fast-growing and evolving field.


Assuntos
Microscopia de Força Atômica , Microscopia de Força Atômica/métodos , Espectrofotometria Infravermelho/métodos
4.
Nano Lett ; 22(11): 4325-4332, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35579622

RESUMO

Thermal properties of materials are often determined by measuring thermalization processes; however, such measurements at the nanoscale are challenging because they require high sensitivity concurrently with high temporal and spatial resolutions. Here, we develop an optomechanical cantilever probe and customize an atomic force microscope with low detection noise ≈1 fm/Hz1/2 over a wide (>100 MHz) bandwidth that measures thermalization dynamics with ≈10 ns temporal resolution, ≈35 nm spatial resolution, and high sensitivity. This setup enables fast nanoimaging of thermal conductivity (η) and interfacial thermal conductance (G) with measurement throughputs ≈6000× faster than conventional macroscale-resolution time-domain thermoreflectance acquiring the full sample thermalization. As a proof-of-principle demonstration, 100 × 100 pixel maps of η and G of a polymer particle are obtained in 200 s with a small relative uncertainty (<10%). This work paves the way to study fast thermal dynamics in materials and devices at the nanoscale.

5.
Anal Chem ; 94(7): 3103-3110, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35138807

RESUMO

Formation and aggregation of metal carboxylates (metal soaps) can degrade the appearance and integrity of oil paints, challenging efforts to conserve painted works of art. Endeavors to understand the root cause of metal soap formation have been hampered by the limited spatial resolution of Fourier transform infrared microscopy (µ-FTIR). We overcome this limitation using optical photothermal infrared spectroscopy (O-PTIR) and photothermal-induced resonance (PTIR), two novel methods that provide IR spectra with ≈500 and ≈10 nm spatial resolutions, respectively. The distribution of chemical phases in thin sections from the top layer of a 19th-century painting is investigated at multiple scales (µ-FTIR ≈ 102 µm3, O-PTIR ≈ 10-1 µm3, PTIR ≈ 10-5 µm3). The paint samples analyzed here are found to be mixtures of pigments (cobalt green, lead white), cured oil, and a rich array of intermixed, small (often ≪ 0.1 µm3) zinc soap domains. We identify Zn stearate and Zn oleate crystalline soaps with characteristic narrow IR peaks (≈1530-1558 cm-1) and a heterogeneous, disordered, water-permeable, tetrahedral zinc soap phase, with a characteristic broad peak centered at ≈1596 cm-1. We show that the high signal-to-noise ratio and spatial resolution afforded by O-PTIR are ideal for identifying phase-separated (or locally concentrated) species with low average concentration, while PTIR provides an unprecedented nanoscale view of distributions and associations of species in paint. This newly accessible nanocompositional information will advance our knowledge of chemical processes in oil paint and will stimulate new art conservation practices.

6.
APL Mater ; 9(9)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37720466

RESUMO

Hyperbolic phonon polaritons (HPhPs) enable strong confinements, low losses, and intrinsic beam steering capabilities determined by the refractive index anisotropy-providing opportunities from hyperlensing to flat optics and other applications. Here, two scanning-probe techniques, photothermal induced resonance (PTIR) and scattering-type scanning near-field optical microscopy (s-SNOM), are used to map infrared (6.4-7.4µm) HPhPs in large (up to 120×250µm2 near-monoisotopic >99%B10) hexagonal boron nitride (hBN) flakes. Wide (≈40µm) PTIR and s-SNOM scans on such large flakes avoid interference from polaritons launched from different asperities (edges, folds, surface defects, etc.) and together with Fourier analyses 0.05µm-1 resolution) enable precise measurements of HPhP lifetimes (up to ≈4.2ps and propagation lengths (up to ≈25 and ≈17µm for the first- and second-order branches, respectively). With respect to naturally abundant hBN, we report an eightfold improved, record-high (for hBN) propagating figure of merit (i.e., with both high confinement and long lifetime) in ≈99%B10 hBN, achieving, finally, theoretically predicted values. We show that wide near-field scans critically enable accurate estimates of the polaritons' lifetimes and propagation lengths and that the incidence angle of light, with respect to both the sample plane and the flake edge, needs to be considered to extract correctly the dispersion relation from the near-field polaritons maps. Overall, the measurements and data analyses employed here elucidate details pertaining to polaritons' propagation in isotopically enriched hBN and pave the way for developing high-performance HPhP-based devices.

7.
Nanophotonics ; 10(5)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36451975

RESUMO

Hyperbolic phonon polaritons (HPhPs) are hybrid excitations of light and coherent lattice vibrations that exist in strongly optically anisotropic media, including two-dimensional materials (e.g., MoO3). These polaritons propagate through the material's volume with long lifetimes, enabling novel mid-infrared nanophotonic applications by compressing light to sub-diffractional dimensions. Here, the dispersion relations and HPhP lifetimes (up to ≈12 ps) in single-crystalline α-MoO3 are determined by Fourier analysis of real-space, nanoscale-resolution polariton images obtained with the photothermal induced resonance (PTIR) technique. Measurements of MoO3 crystals deposited on periodic gratings show longer HPhPs propagation lengths and lifetimes (≈2×), and lower optical compressions, in suspended regions compared with regions in direct contact with the substrate. Additionally, PTIR data reveal MoO3 subsurface defects, which have a negligible effect on HPhP propagation, as well as polymeric contaminants localized under parts of the MoO3 crystals, which are derived from sample preparation. This work highlights the ability to engineer substrate-defined nanophotonic structures from layered anisotropic materials.

8.
ACS Appl Mater Interfaces ; 11(28): 25578-25585, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31265230

RESUMO

van der Waals heterostructures (vdWHs) leverage the characteristics of two-dimensional (2D) material building blocks to create a myriad of structures with unique and desirable properties. Several commonly employed fabrication strategies rely on polymeric stamps to assemble layers of 2D materials into vertical stacks. However, the properties of such heterostructures frequently are degraded by contaminants, typically of unknown composition, trapped between the constituent layers. Such contaminants, therefore, impede studies of the intrinsic properties of heterostructures and hinder their application. Here, we use the photothermal induced resonance (PTIR) technique to obtain infrared spectra and maps of the contaminants down to a few attomoles and with nanoscale resolution. Heterostructures comprised of WSe2, WS2, and hexagonal boron nitride layers were found to contain significant amounts of poly(dimethylsiloxane) (PDMS) and polycarbonate, corresponding to the stamp materials used in their construction. Additionally, we verify that an atomic force microscope-based "nanosqueegee" technique is an effective method for locally removing contaminants by comparing spectra within as-fabricated and cleaned regions. Having identified the source of the contaminants, we demonstrate that cleaning PDMS stamps with isopropyl alcohol or toluene prior to vdWH fabrication reduces PDMS contamination within the structures. The general applicability of the PTIR technique for identifying the sources corrupting vdWHs provides valuable guidance for devising mitigation strategies (e.g., stamp cleaning or pre-/post-treatments) and enhances capabilities for producing materials with precisely engineered properties.

9.
ACS Nano ; 11(8): 7995-8001, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28763196

RESUMO

The high theoretical energy density of alloyed lithium and germanium (Li15Ge4), 1384 mAh/g, makes germanium a promising anode material for lithium-ion batteries. However, common alloy anode architectures suffer from long-term instability upon repetitive charge-discharge cycles that arise from stress-induced degradation upon lithiation (volume expansion >300%). Here, we explore the use of the two-dimensional nanosheet structure of germanane to mitigate stress from high volume expansion and present a facile method for producing stable single-to-multisheet dispersions of pure germanane. Purity and degree of exfoliation were assessed with scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. We measured representative germanane battery electrodes to have a reversible Li-ion capacity of 1108 mAh/g when cycled between 0.1 and 2 V vs Li/Li+. These results indicate germanane anodes are capable of near-theoretical-maximum energy storage, perform well at high cycling rates, and can maintain capacity over 100 cycles.

10.
Nano Lett ; 17(8): 5035-5042, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28737930

RESUMO

We report a facile, high-throughput soft lithography process that utilizes nanoscale channels formed naturally at the edges of microscale relief features on soft, elastomeric stamps. Upon contact with self-assembled monolayer (SAM) functionalized substrates, the roof of the stamp collapses, resulting in the selective removal of SAM molecules via a chemical lift-off process. With this technique, which we call self-collapse lithography (SCL), sub-30 nm patterns were achieved readily using masters with microscale features prepared by conventional photolithography. The feature sizes of the chemical patterns can be varied continuously from ∼2 µm to below 30 nm by decreasing stamp relief heights from 1 µm to 50 nm. Likewise, for fixed relief heights, reducing the stamp Young's modulus from ∼2.0 to ∼0.8 MPa resulted in shrinking the features of resulting patterns from ∼400 to ∼100 nm. The self-collapse mechanism was studied using finite element simulation methods to model the competition between adhesion and restoring stresses during patterning. These results correlate well with the experimental data and reveal the relationship between the line widths, channel heights, and Young's moduli of the stamps. In addition, SCL was applied to pattern two-dimensional arrays of circles and squares. These chemical patterns served as resists during etching processes to transfer patterns to the underlying materials (e.g., gold nanostructures). This work provides new insights into the natural propensity of elastomeric stamps to self-collapse and demonstrates a means of exploiting this behavior to achieve patterning via nanoscale chemical lift-off lithography.

11.
J Am Chem Soc ; 138(18): 5957-67, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27090503

RESUMO

Detailed understanding and control of the intermolecular forces that govern molecular assembly are necessary to engineer structure and function at the nanoscale. Liquid crystal (LC) assembly is exceptionally sensitive to surface properties, capable of transducing nanoscale intermolecular interactions into a macroscopic optical readout. Self-assembled monolayers (SAMs) modify surface interactions and are known to influence LC alignment. Here, we exploit the different dipole magnitudes and orientations of carboranethiol and -dithiol positional isomers to deconvolve the influence of SAM-LC dipolar coupling from variations in molecular geometry, tilt, and order. Director orientations and anchoring energies are measured for LC cells employing various carboranethiol and -dithiol isomer alignment layers. The normal component of the molecular dipole in the SAM, toward or away from the underlying substrate, was found to determine the in-plane LC director orientation relative to the anisotropy axis of the surface. By using LC alignment as a probe of interaction strength, we elucidate the role of dipolar coupling of molecular monolayers to their environment in determining molecular orientations. We apply this understanding to advance the engineering of molecular interactions at the nanoscale.

12.
ACS Nano ; 9(5): 4734-42, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25867638

RESUMO

Carboranethiol molecules self-assemble into upright molecular monolayers on Au{111} with aligned dipoles in two dimensions. The positions and offsets of each molecule's geometric apex and local dipole moment are measured and correlated with sub-Ångström precision. Juxtaposing simultaneously acquired images, we observe monodirectional offsets between the molecular apexes and dipole extrema. We determine dipole orientations using efficient new image analysis techniques and find aligned dipoles to be highly defect tolerant, crossing molecular domain boundaries and substrate step edges. The alignment observed, consistent with Monte Carlo simulations, forms through favorable intermolecular dipole-dipole interactions.

13.
J Am Chem Soc ; 135(49): 18528-35, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24219245

RESUMO

Single-molecule measurements of complex biological structures such as proteins are an attractive route for determining structures of the large number of important biomolecules that have proved refractory to analysis through standard techniques such as X-ray crystallography and nuclear magnetic resonance. We use a custom-built low-current scanning tunneling microscope to image peptide structures at the single-molecule scale in a model peptide that forms ß sheets, a structural motif common in protein misfolding diseases. We successfully differentiate between histidine and alanine amino acid residues, and further differentiate side chain orientations in individual histidine residues, by correlating features in scanning tunneling microscope images with those in energy-optimized models. Beta sheets containing histidine residues are used as a model system due to the role histidine plays in transition metal binding associated with amyloid oligomerization in Alzheimer's and other diseases. Such measurements are a first step toward analyzing peptide and protein structures at the single-molecule level.


Assuntos
Aminoácidos/química , Microscopia de Tunelamento/métodos , Peptídeos/análise , Dicroísmo Circular , Cristalografia por Raios X , Microscopia de Força Atômica
14.
ACS Appl Mater Interfaces ; 5(20): 10310-6, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24070334

RESUMO

We address the importance of the dynamic molecular ink concentration at a polymer stamp/substrate interface during microcontact displacement or insertion printing. We demonstrate that by controlling molecular flux, we can influence both the molecular-scale order and the rate of molecular exchange of self-assembled monolayers (SAMs) on gold surfaces. Surface depletion of molecular ink at a polymer stamp/substrate interface is driven predominantly by diffusion into the stamp interior; depletion occurs briefly at the substrate by SAM formation, but diffusion of molecules into the bulk of the stamp dominates over practical experimental time scales. As contact time is increased, the interface concentration varies significantly due to diffusion, affecting the quality and coverage of printed films. Controlling interfacial concentration improves printed film reproducibility and the fractional coverage of multicomponent films can be controlled to within a few percent. We first briefly review the important aspects of molecular ink diffusion at a stamp interface and how it relates to experimental duration. We then describe two examples that illustrate control over ink transfer during experiments: the role of contact time on monolayer reproducibility and molecular order, and the fine control of fractional monolayer coverage for the displacement printing of 1-adamantanethiolate SAMs by 1-dodecanethiol.

15.
ACS Nano ; 5(2): 693-729, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21338175

RESUMO

Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution.


Assuntos
Biologia/métodos , Elétrons , Fenômenos Mecânicos , Fótons , Física/métodos , Humanos
16.
Thromb Haemost ; 90(6): 1128-34, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14652647

RESUMO

Graft occlusion following peripheral vascular surgery is attributable to some combination of acute thrombosis, and progression of atherosclerosis: interactions between leukocytes and activated platelets may play a role in both of these processes. This investigation measured perioperative leukocyte-platelet conjugate formation, and leukocyte and platelet activation in 46 patients undergoing surgery for lower extremity peripheral vascular disease (PVD). All patients were followed for graft patency over the next 6 months; 27 patients had grafts that remained patent while 19 had graft occlusion. On postoperative day #1 (POD#1), the graft occlusion group demonstrated a significantly greater increase in circulating levels of both monocyteplatelet and neutrophil (PMN)-platelet conjugates compared to the patent graft patients (p=0.015 and 0.018, respectively). PMN activation, assessed by increases in surface CD11b expression, was also significantly increased on POD#1 in the graft occlusion group compared to the patent group (p=0.026). The percentage of circulating activated (CD62P+) platelets did not differ between groups, but patients with graft occlusion demonstrated a higher percentage of younger, reticulated plate-lets throughout the study period (p=0.008), indicating increased platelet turnover. We conclude that in the early postoperative period, leukocyte-platelet adhesion, PMN activation, and platelet turnover are significantly greater in PVD patients who go on to develop later graft occlusion. Cellular activation and heterotypic cell interactions in peripheral vascular surgery patients may be important in the etiologies of thrombosis and/or accelerated atherosclerosis leading to graft loss.


Assuntos
Plaquetas/patologia , Oclusão de Enxerto Vascular/etiologia , Leucócitos/patologia , Doenças Vasculares Periféricas/cirurgia , Idoso , Plaquetas/fisiologia , Implante de Prótese Vascular/efeitos adversos , Adesão Celular , Feminino , Oclusão de Enxerto Vascular/patologia , Humanos , Leucócitos/fisiologia , Extremidade Inferior/cirurgia , Masculino , Pessoa de Meia-Idade , Monócitos/patologia , Ativação de Neutrófilo , Neutrófilos/patologia , Doenças Vasculares Periféricas/complicações , Ativação Plaquetária , Cuidados Pós-Operatórios , Trombose/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...