Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(15): eadm8167, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598632

RESUMO

Even when split into several chromosomes, DNA molecules that make up our genome are too long to fit into the cell nuclei unless massively folded. Such folding must accommodate the need for timely access to selected parts of the genome by transcription factors, RNA polymerases, and DNA replication machinery. Here, we review our current understanding of the genome folding inside the interphase nuclei. We consider the resulting genome architecture at three scales with a particular focus on the intermediate (meso) scale and summarize the insights gained from recent experimental observations and diverse computational models.


Assuntos
Núcleo Celular , Cromatina , Cromatina/genética , Núcleo Celular/genética , Cromossomos/genética , DNA/genética , Genoma
2.
Sci Adv ; 9(51): eadj8198, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134278

RESUMO

Animals use the Polycomb system to epigenetically repress developmental genes. The repression requires trimethylation of lysine 27 of histone H3 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2), but the dynamics of this process is poorly understood. To bridge the gap, we developed a computational model that forecasts H3K27 methylation in Drosophila with high temporal resolution and spatial accuracy of contemporary experimental techniques. Using this model, we show that pools of methylated H3K27 in dividing cells are defined by the effective concentration of PRC2 and the replication frequency. We find that the allosteric stimulation by preexisting H3K27me3 makes PRC2 better in methylating developmental genes as opposed to indiscriminate methylation throughout the genome. Applied to Drosophila development, our model argues that, in this organism, the intergenerationally inherited H3K27me3 does not "survive" rapid cycles of embryonic chromatin replication and is unlikely to transmit the memory of epigenetic repression to the offspring. Our model is adaptable to other organisms, including mice and humans.


Assuntos
Proteínas de Drosophila , Histonas , Humanos , Animais , Camundongos , Histonas/genética , Histonas/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Cromatina/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Drosophila/genética , Metilação
3.
Nucleic Acids Res ; 51(21): 11613-11633, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37855680

RESUMO

Development of multicellular animals requires epigenetic repression by Polycomb group proteins. The latter assemble in multi-subunit complexes, of which two kinds, Polycomb Repressive Complex 1 (PRC1) and Polycomb Repressive Complex 2 (PRC2), act together to repress key developmental genes. How PRC1 and PRC2 recognize specific genes remains an open question. Here we report the identification of several hundreds of DNA elements that tether canonical PRC1 to human developmental genes. We use the term tether to describe a process leading to a prominent presence of canonical PRC1 at certain genomic sites, although the complex is unlikely to interact with DNA directly. Detailed analysis indicates that sequence features associated with PRC1 tethering differ from those that favour PRC2 binding. Throughout the genome, the two kinds of sequence features mix in different proportions to yield a gamut of DNA elements that range from those tethering predominantly PRC1 or PRC2 to ones capable of tethering both complexes. The emerging picture is similar to the paradigmatic targeting of Polycomb complexes by Polycomb Response Elements (PREs) of Drosophila but providing for greater plasticity.


Assuntos
DNA , Complexo Repressor Polycomb 1 , Animais , Humanos , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , DNA/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Cromatina , Drosophila/genética
4.
J Biol Chem ; 299(9): 105080, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499944

RESUMO

Epigenetic repression often involves covalent histone modifications. Yet, how the presence of a histone mark translates into changes in chromatin structure that ultimately benefits the repression is largely unclear. Polycomb group proteins comprise a family of evolutionarily conserved epigenetic repressors. They act as multi-subunit complexes one of which tri-methylates histone H3 at Lysine 27 (H3K27). Here we describe a novel Monte Carlo-Molecular Dynamics simulation framework, which we employed to discover that stochastic interaction of Polycomb Repressive Complex 1 (PRC1) with tri-methylated H3K27 is sufficient to fold the methylated chromatin. Unexpectedly, such chromatin folding leads to spatial clustering of the DNA elements bound by PRC1. Our results provide further insight into mechanisms of epigenetic repression and the process of chromatin folding in response to histone methylation.


Assuntos
Cromatina , Proteínas de Drosophila , Histonas , Proteínas do Grupo Polycomb , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histonas/química , Histonas/metabolismo , Metilação , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Dobramento de Proteína , Simulação de Dinâmica Molecular , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Animais
5.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37169594

RESUMO

Transposable elements constitute a substantial portion of most eukaryotic genomes and their activity can lead to developmental and neuronal defects. In the germline, transposon activity is antagonized by the PIWI-interacting RNA pathway tasked with repression of transposon transcription and degrading transcripts that have already been produced. However, most of the genes required for transposon control are not expressed outside the germline, prompting the question: what causes deleterious transposons activity in the soma and how is it managed? Here, we show that disruptions of the Histone 3 lysine 36 methylation machinery led to increased transposon transcription in Drosophila melanogaster brains and that there is division of labour for the repression of transposable elements between the different methyltransferases Set2, NSD, and Ash1. Furthermore, we show that disruption of methylation leads to somatic activation of key genes in the PIWI-interacting RNA pathway and the preferential production of RNA from dual-strand piRNA clusters.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elementos de DNA Transponíveis/genética , Metilação , Lisina/genética , Lisina/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
6.
Sci Adv ; 9(5): eade0090, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36735780

RESUMO

Drosophila insulators were the first DNA elements found to regulate gene expression by delimiting chromatin contacts. We still do not know how many of them exist and what impact they have on the Drosophila genome folding. Contrary to vertebrates, there is no evidence that fly insulators block cohesin-mediated chromatin loop extrusion. Therefore, their mechanism of action remains uncertain. To bridge these gaps, we mapped chromatin contacts in Drosophila cells lacking the key insulator proteins CTCF and Cp190. With this approach, we found hundreds of insulator elements. Their study indicates that Drosophila insulators play a minor role in the overall genome folding but affect chromatin contacts locally at many loci. Our observations argue that Cp190 promotes cobinding of other insulator proteins and that the model, where Drosophila insulators block chromatin contacts by forming loops, needs revision. Our insulator catalog provides an important resource to study mechanisms of genome folding.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elementos Isolantes/genética , Proteínas Nucleares/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo
7.
Sci Adv ; 8(36): eadd0103, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36070387

RESUMO

Polycomb group (PcG) mutants were first identified in Drosophila on the basis of their failure to maintain proper Hox gene repression during development. The proteins encoded by the corresponding fly genes mainly assemble into one of two discrete Polycomb repressive complexes: PRC1 or PRC2. However, biochemical analyses in mammals have revealed alternative forms of PRC2 and multiple distinct types of noncanonical or variant PRC1. Through a series of proteomic analyses, we identify analogous PRC2 and variant PRC1 complexes in Drosophila, as well as a broader repertoire of interactions implicated in early development. Our data provide strong support for the ancient diversity of PcG complexes and a framework for future analysis in a longstanding and versatile genetic system.

8.
Sci Adv ; 7(40): eabh4390, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34597135

RESUMO

In Drosophila, two chromosomes require special mechanisms to balance their transcriptional output to the rest of the genome. These are the male-specific lethal complex targeting the male X chromosome and Painting of fourth targeting chromosome 4. Here, we explore the role of histone H3 methylated at lysine-36 (H3K36) and the associated methyltransferases­Set2, NSD, and Ash1­in these two chromosome-specific systems. We show that the loss of Set2 impairs the MSL complex­mediated dosage compensation; however, the effect is not recapitulated by H3K36 replacement and indicates an alternative target of Set2. Unexpectedly, balanced transcriptional output from the fourth chromosome requires intact H3K36 and depends on the additive functions of NSD and Ash1. We conclude that H3K36 methylation and the associated methyltransferases are important factors to balance transcriptional output of the male X chromosome and the fourth chromosome. Furthermore, our study highlights the pleiotropic effects of these enzymes.

9.
Sci Adv ; 6(7): eaax2941, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32095517

RESUMO

CRISPR-Cas9-mediated homology-directed DNA repair is the method of choice for precise gene editing in a wide range of model organisms, including mouse and human. Broad use by the biomedical community refined the method, making it more efficient and sequence specific. Nevertheless, the rapidly evolving technique still contains pitfalls. During the generation of six different conditional knockout mouse models, we discovered that frequently (sometimes solely) homology-directed repair and/or nonhomologous end joining mechanisms caused multiple unwanted head-to-tail insertions of donor DNA templates. Disturbingly, conventionally applied PCR analysis, in most cases, failed to identify these multiple integration events, which led to a high rate of falsely claimed precisely edited alleles. We caution that comprehensive analysis of modified alleles is essential and offer practical solutions to correctly identify precisely edited chromosomes.


Assuntos
Sistemas CRISPR-Cas/genética , DNA/genética , Edição de Genes , Moldes Genéticos , Animais , Cruzamentos Genéticos , Feminino , Marcação de Genes , Loci Gênicos , Genoma , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais
10.
G3 (Bethesda) ; 9(11): 3801-3812, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31540973

RESUMO

Antagonistic functions of Polycomb and Trithorax proteins are essential for proper development of all metazoans. While the Polycomb proteins maintain the repressed state of many key developmental genes, the Trithorax proteins ensure that these genes stay active in cells where they have to be expressed. Ash1 is the Trithorax protein that was proposed to counteract Polycomb repression by methylating lysine 36 of histone H3. However, it was recently shown that genetic replacement of Drosophila histone H3 with the variant that carried Arginine instead of Lysine at position 36 did not impair the ability of Ash1 to counteract Polycomb repression. This argues that Ash1 counteracts Polycomb repression by methylating yet unknown substrate(s) and that it is time to look beyond Ash1 methyltransferase SET domain, at other evolutionary conserved parts of the protein that received little attention. Here we used Drosophila genetics to demonstrate that Ash1 requires each of the BAH, PHD and SET domains to counteract Polycomb repression, while AT hooks are dispensable. Our findings argue that, in vivo, Ash1 acts as a multimer. Thereby it can combine the input of the SET domain and PHD-BAH cassette residing in different peptides. Finally, using new loss of function alleles, we show that zygotic Ash1 is required to prevent erroneous repression of homeotic genes of the bithorax complex in the embryo.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas do Grupo Polycomb/genética , Fatores de Transcrição/genética , Animais , Drosophila/genética , Epigênese Genética , Feminino , Perda de Heterozigosidade , Masculino , Domínios Proteicos
11.
EMBO Rep ; 20(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833342

RESUMO

Polycomb repression is critical for metazoan development. Equally important but less studied is the Trithorax system, which safeguards Polycomb target genes from the repression in cells where they have to remain active. It was proposed that the Trithorax system acts via methylation of histone H3 at lysine 4 and lysine 36 (H3K36), thereby inhibiting histone methyltransferase activity of the Polycomb complexes. Here we test this hypothesis by asking whether the Trithorax group protein Ash1 requires H3K36 methylation to counteract Polycomb repression. We show that Ash1 is the only Drosophila H3K36-specific methyltransferase necessary to prevent excessive Polycomb repression of homeotic genes. Unexpectedly, our experiments reveal no correlation between the extent of H3K36 methylation and the resistance to Polycomb repression. Furthermore, we find that complete substitution of the zygotic histone H3 with a variant in which lysine 36 is replaced by arginine does not cause excessive repression of homeotic genes. Our results suggest that the model, where the Trithorax group proteins methylate histone H3 to inhibit the histone methyltransferase activity of the Polycomb complexes, needs revision.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Fatores de Transcrição/metabolismo , Alelos , Animais , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Regulação da Expressão Gênica , Loci Gênicos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Mutação com Perda de Função , Metilação , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/química , Fatores de Transcrição/genética
12.
J Biol Chem ; 293(37): 14342-14358, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30068546

RESUMO

Polycomb group proteins are essential epigenetic repressors. They form multiple protein complexes of which two kinds, PRC1 and PRC2, are indispensable for repression. Although much is known about their biochemical properties, how mammalian PRC1 and PRC2 are targeted to specific genes is poorly understood. Here, we establish the cyclin D2 (CCND2) oncogene as a simple model to address this question. We provide the evidence that the targeting of PRC1 to CCND2 involves a dedicated PRC1-targeting element (PTE). The PTE appears to act in concert with an adjacent cytosine-phosphate-guanine (CpG) island to arrange for the robust binding of PRC1 and PRC2 to repressed CCND2 Our findings pave the way to identify sequence-specific DNA-binding proteins implicated in the targeting of mammalian PRC1 complexes and provide novel link between polycomb repression and cancer.


Assuntos
Ciclina D2/genética , Ciclina D2/metabolismo , Oncogenes , Proteínas do Grupo Polycomb/metabolismo , Animais , Sítios de Ligação , Inativação Gênica , Humanos , Camundongos , Ligação Proteica , Transcrição Gênica
14.
Nucleus ; 8(5): 496-505, 2017 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-28910569

RESUMO

Polycomb Group (PcG) proteins epigenetically repress key developmental genes and thereby control alternative cell fates. PcG proteins act as complexes that can modify histones and these histone modifications play a role in transmitting the "memory" of the repressed state as cells divide. Here we consider mainstream models that link histone modifications to hierarchical recruitment of PcG complexes and compare them to results of a direct test of interdependence between PcG complexes for recruitment to Drosophila genes. The direct test indicates that PcG complexes do not rely on histone modifications to recognize their target genes but use them to stabilize the interactions within large chromatin domains. It also shows that multiple strategies are used to coordinate the targeting of PcG complexes to different genes, which may make the repression of these genes more or less robust.


Assuntos
Proteínas do Grupo Polycomb/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Histonas/metabolismo , Humanos , Proteínas do Grupo Polycomb/genética , Transporte Proteico
15.
Genetics ; 205(1): 5-24, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049701

RESUMO

Understanding how the metazoan genome is used during development and cell differentiation is one of the major challenges in the postgenomic era. Early studies in Drosophila suggested that three-dimensional (3D) chromosome organization plays important regulatory roles in this process and recent technological advances started to reveal connections at the molecular level. Here we will consider general features of the architectural organization of the Drosophila genome, providing historical perspective and insights from recent work. We will compare the linear and spatial segmentation of the fly genome and focus on the two key regulators of genome architecture: insulator components and Polycomb group proteins. With its unique set of genetic tools and a compact, well annotated genome, Drosophila is poised to remain a model system of choice for rapid progress in understanding principles of genome organization and to serve as a proving ground for development of 3D genome-engineering techniques.


Assuntos
Drosophila/genética , Drosophila/fisiologia , Animais , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Cromossomos/genética , Cromossomos/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Epigenômica , Genoma , Genoma de Inseto , Elementos Isolantes , Proteínas do Grupo Polycomb/genética
16.
Nucleic Acids Res ; 44(21): 10132-10149, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27557709

RESUMO

Polycomb Group (PcG) proteins are epigenetic repressors essential for control of development and cell differentiation. They form multiple complexes of which PRC1 and PRC2 are evolutionary conserved and obligatory for repression. The targeting of PRC1 and PRC2 is poorly understood and was proposed to be hierarchical and involve tri-methylation of histone H3 (H3K27me3) and/or monoubiquitylation of histone H2A (H2AK118ub). Here, we present a strict test of this hypothesis using the Drosophila model. We discover that neither H3K27me3 nor H2AK118ub is required for targeting PRC complexes to Polycomb Response Elements (PREs). We find that PRC1 can bind PREs in the absence of PRC2 but at many PREs PRC2 requires PRC1 to be targeted. We show that one role of H3K27me3 is to allow PcG complexes anchored at PREs to interact with surrounding chromatin. In contrast, the bulk of H2AK118ub is unrelated to PcG repression. These findings radically change our view of how PcG repression is targeted and suggest that PRC1 and PRC2 can communicate independently of histone modifications.


Assuntos
Proteínas de Drosophila/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Elementos de Resposta , Animais , Animais Geneticamente Modificados , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/genética , Genoma de Inseto , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Lisina/metabolismo , Metilação , Proteínas Associadas aos Microtúbulos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Ubiquitinação
17.
Genetics ; 202(2): 601-17, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26715665

RESUMO

Chromatin insulators are remarkable regulatory elements that can bring distant genomic sites together and block unscheduled enhancer-promoter communications. Insulators act via associated insulator proteins of two classes: sequence-specific DNA binding factors and "bridging" proteins. The latter are required to mediate interactions between distant insulator elements. Chromatin insulators are critical for correct expression of complex loci; however, their mode of action is poorly understood. Here, we use the Drosophila bithorax complex as a model to investigate the roles of the bridging proteins Cp190 and Mod(mdg4). The bithorax complex consists of three evolutionarily conserved homeotic genes Ubx, abd-A, and Abd-B, which specify anterior-posterior identity of the last thoracic and all abdominal segments of the fly. Looking at effects of CTCF, mod(mdg4), and Cp190 mutations on expression of the bithorax complex genes, we provide the first functional evidence that Mod(mdg4) acts in concert with the DNA binding insulator protein CTCF. We find that Mod(mdg4) and Cp190 are not redundant and may have distinct functional properties. We, for the first time, demonstrate that Cp190 is critical for correct regulation of the bithorax complex and show that Cp190 is required at an exceptionally strong Fub insulator to partition the bithorax complex into two topological domains.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Elementos Isolantes , Alelos , Animais , Drosophila/embriologia , Epistasia Genética , Regulação da Expressão Gênica , Ordem dos Genes , Genes Homeobox , Mutação , Especificidade de Órgãos/genética , Fenótipo , Ligação Proteica
18.
Genome Res ; 25(8): 1170-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25986499

RESUMO

Polycomb group (PcG) complexes PRC1 and PRC2 are well known for silencing specific developmental genes. PRC2 is a methyltransferase targeting histone H3K27 and producing H3K27me3, essential for stable silencing. Less well known but quantitatively much more important is the genome-wide role of PRC2 that dimethylates ∼70% of total H3K27. We show that H3K27me2 occurs in inverse proportion to transcriptional activity in most non-PcG target genes and intergenic regions and is governed by opposing roaming activities of PRC2 and complexes containing the H3K27 demethylase UTX. Surprisingly, loss of H3K27me2 results in global transcriptional derepression proportionally greatest in silent or weakly transcribed intergenic and genic regions and accompanied by an increase of H3K27ac and H3K4me1. H3K27me2 therefore sets a threshold that prevents random, unscheduled transcription all over the genome and even limits the activity of highly transcribed genes. PRC1-type complexes also have global roles. Unexpectedly, we find a pervasive distribution of histone H2A ubiquitylated at lysine 118 (H2AK118ub) outside of canonical PcG target regions, dependent on the RING/Sce subunit of PRC1-type complexes. We show, however, that H2AK118ub does not mediate the global PRC2 activity or the global repression and is predominantly produced by a new complex involving L(3)73Ah, a homolog of mammalian PCGF3.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Complexo Repressor Polycomb 2/metabolismo , Transcrição Gênica , Animais , Drosophila melanogaster/metabolismo , Inativação Gênica , Genoma , Histonas/metabolismo , Metilação
19.
Cell Rep ; 8(2): 321-5, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25061856

RESUMO

Polycomb complexes are found in most cells, but they must be targeted to specific genes in specific cell types in order to regulate pluripotency and differentiation. The recruitment of Polycomb complexes to specific targets has been widely thought to occur in two steps: first, one complex, PRC2, produces histone H3 lysine 27 (H3K27) trimethylation at a specific gene, and then the PRC1 complex is recruited by its ability to bind to H3K27me3. Now, three new articles turn this model upside-down by showing that binding of a variant PRC1 complex and subsequent H2A ubiquitylation of surrounding chromatin is sufficient to trigger the recruitment of PRC2 and H3K27 trimethylation. These studies also show that ubiquitylated H2A is directly sensed by PRC2 and that ablation of PRC1-mediated H2A ubiquitylation impairs genome-wide PRC2 binding and disrupts mouse development.


Assuntos
Proteínas do Grupo Polycomb/metabolismo , Ubiquitinação , Animais , Montagem e Desmontagem da Cromatina , Humanos
20.
PLoS Genet ; 10(7): e1004495, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25010632

RESUMO

Polycomb Group (PcG) proteins are epigenetic repressors that control metazoan development and cell differentiation. In Drosophila, PcG proteins form five distinct complexes targeted to genes by Polycomb Response Elements (PREs). Of all PcG complexes PhoRC is the only one that contains a sequence-specific DNA binding subunit (PHO or PHOL), which led to a model that places PhoRC at the base of the recruitment hierarchy. Here we demonstrate that in vivo PHO is preferred to PHOL as a subunit of PhoRC and that PHO and PHOL associate with PREs and a subset of transcriptionally active promoters. Although the binding to the promoter sites depends on the quality of recognition sequences, the binding to PREs does not. Instead, the efficient recruitment of PhoRC to PREs requires the SFMBT subunit and crosstalk with Polycomb Repressive Complex 1. We find that human YY1 protein, the ortholog of PHO, binds sites at active promoters in the human genome but does not bind most PcG target genes, presumably because the interactions involved in the targeting to Drosophila PREs are lost in the mammalian lineage. We conclude that the recruitment of PhoRC to PREs is based on combinatorial interactions and propose that such a recruitment strategy is important to attenuate the binding of PcG proteins when the target genes are transcriptionally active. Our findings allow the appropriate placement of PhoRC in the PcG recruitment hierarchy and provide a rationale to explain why YY1 is unlikely to serve as a general recruiter of mammalian Polycomb complexes despite its reported ability to participate in PcG repression in flies.


Assuntos
Diferenciação Celular/genética , Complexo Repressor Polycomb 1/genética , Proteínas do Grupo Polycomb/genética , Elementos de Resposta/genética , Animais , Cromatina/genética , Proteínas de Ligação a DNA/genética , Drosophila melanogaster , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...