Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Parasitol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38677925

RESUMO

Hookworms are parasites, closely related to the model nematode Caenorhabditis elegans, that are a major economic and health burden worldwide. Primarily three hookworm species (Necator americanus, Ancylostoma duodenale, and Ancylostoma ceylanicum) infect humans. Another 100 hookworm species from 19 genera infect primates, ruminants, and carnivores. Genetic data exist for only seven of these species. Genome sequences are available from only four of these species in two genera, leaving 96 others (particularly those parasitizing wildlife) without any genomic data. The most recent hookworm genomes were published 5 years ago, leaving the field in a dusk. However, assembling genomes from single hookworms may bring a new dawn. Here we summarize advances, challenges, and opportunities for studying these neglected but important parasitic nematodes.

2.
PLoS Pathog ; 19(12): e1011797, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38079450

RESUMO

The impact of the host immune environment on parasite transcription and fitness is currently unknown. It is widely held that hookworm infections have an immunomodulatory impact on the host, but whether the converse is true remains unclear. Immunity against adult-stage hookworms is largely mediated by Type 2 immune responses driven by the transcription factor Signal Transducer and Activator of Transcription 6 (STAT6). This study investigated whether serial passage of the rodent hookworm Nippostrongylus brasiliensis in STAT6-deficient mice (STAT6 KO) caused changes in parasites over time. After adaptation to STAT6 KO hosts, N. brasiliensis increased their reproductive output, feeding capacity, energy content, and body size. Using an improved N. brasiliensis genome, we found that these physiological changes corresponded with a dramatic shift in the transcriptional landscape, including increased expression of gene pathways associated with egg production, but a decrease in genes encoding neuropeptides, proteases, SCP/TAPS proteins, and transthyretin-like proteins; the latter three categories have been repeatedly observed in hookworm excreted/secreted proteins (ESPs) implicated in immunosuppression. Although transcriptional changes started to appear in the first generation of passage in STAT6 KO hosts for both immature and mature adult stages, downregulation of the genes putatively involved in immunosuppression was only observed after multiple generations in this immunodeficient environment. When STAT6 KO-adapted N. brasiliensis were reintroduced to a naive WT host after up to 26 generations, this progressive change in host-adaptation corresponded to increased production of inflammatory cytokines by the WT host. Surprisingly, however, this single exposure of STAT6 KO-adapted N. brasiliensis to WT hosts resulted in worms that were morphologically and transcriptionally indistinguishable from WT-adapted parasites. This work uncovers remarkable plasticity in the ability of hookworms to adapt to their hosts, which may present a general feature of parasitic nematodes.


Assuntos
Ancylostomatoidea , Infecções por Uncinaria , Camundongos , Animais , Citocinas , Nippostrongylus , Fator de Transcrição STAT6/genética
3.
PLoS Biol ; 21(11): e3002400, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37988381

RESUMO

Nutritional deprivation triggers a switch from a saprotrophic to predatory lifestyle in soil-dwelling nematode-trapping fungi (NTF). In particular, the NTF Arthrobotrys oligospora secretes food and sex cues to lure nematodes to its mycelium and is triggered to develop specialized trapping devices. Captured nematodes are then invaded and digested by the fungus, thus serving as a food source. In this study, we examined the transcriptomic response of A. oligospora across the stages of sensing, trap development, and digestion upon exposure to the model nematode Caenorhabditis elegans. A. oligospora enacts a dynamic transcriptomic response, especially of protein secretion-related genes, in the presence of prey. Two-thirds of the predicted secretome of A. oligospora was up-regulated in the presence of C. elegans at all time points examined, and among these secreted proteins, 38.5% are predicted to be effector proteins. Furthermore, functional studies disrupting the t-SNARE protein Sso2 resulted in impaired ability to capture nematodes. Additionally, genes of the DUF3129 family, which are expanded in the genomes of several NTF, were highly up-regulated upon nematode exposure. We observed the accumulation of highly expressed DUF3129 proteins in trap cells, leading us to name members of this gene family as Trap Enriched Proteins (TEPs). Gene deletion of the most highly expressed TEP gene, TEP1, impairs the function of traps and prevents the fungus from capturing prey efficiently. In late stages of predation, we observed up-regulation of a variety of proteases, including metalloproteases. Following penetration of nematodes, these metalloproteases facilitate hyphal growth required for colonization of prey. These findings provide insights into the biology of the predatory lifestyle switch in a carnivorous fungus and provide frameworks for other fungal-nematode predator-prey systems.


Assuntos
Caenorhabditis elegans , Nematoides , Animais , Caenorhabditis elegans/genética , Carnivoridade , Perfilação da Expressão Gênica , Metaloproteases
4.
PLoS Negl Trop Dis ; 17(8): e0011499, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37624869

RESUMO

Rapid increases in human populations and environmental changes of past decades have led to changes in rates of contact and spatial overlap with wildlife. Together with other historical, social and environmental processes, this has significantly contributed to pathogen transmission in both directions, especially between humans and non-human primates, whose close phylogenetic relationship facilitates cross-infections. Using high-throughput amplicon sequencing, we studied strongylid communities in sympatric western lowland gorillas, central chimpanzees and humans co-occurring in an unprotected area in the northern periphery of the Dja Faunal Reserve, Cameroon. At the genus level, we classified 65 strongylid ITS-2 amplicon sequencing variants (ASVs) in humans and great apes. Great apes exhibited higher strongylid diversity than humans. Necator and Oesophagostomum were the most prevalent genera, and we commonly observed mixed infections of more than one strongylid species. Human strongylid communities were dominated by the human hookworm N. americanus, while great apes were mainly infected with N. gorillae, O. stephanostomum and trichostrongylids. We were also able to detect rare strongylid taxa (such as Ancylostoma and Ternidens). We detected eight ASVs shared between humans and great apes (four N. americanus variants, two N. gorillae variants, one O. stephanostomum type I and one Trichostrongylus sp. type II variant). Our results show that knowledge of strongylid communities in primates, including humans, is still limited. Sharing the same habitat, especially outside protected areas (where access to the forest is not restricted), can enable mutual parasite exchange and can even override host phylogeny or conserved patterns. Such studies are critical for assessing the threats posed to all hosts by increasing human-wildlife spatial overlap. In this study, the term "contact" refers to physical contact, while "spatial overlap" refers to environmental contact.


Assuntos
Ancylostoma , Pan troglodytes , Animais , Humanos , Camarões/epidemiologia , Filogenia , Animais Selvagens
5.
Genetics ; 223(4)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36801937

RESUMO

The nematode Caenorhabditis elegans utilizes chemosensation to navigate an ever-changing environment for its survival. A class of secreted small-molecule pheromones, termed ascarosides, play an important role in olfactory perception by affecting biological functions ranging from development to behavior. The ascaroside #8 (ascr#8) mediates sex-specific behaviors, driving avoidance in hermaphrodites and attraction in males. Males sense ascr#8 via the ciliated male-specific cephalic sensory (CEM) neurons, which exhibit radial symmetry along dorsal-ventral and left-right axes. Calcium imaging studies suggest a complex neural coding mechanism that translates stochastic physiological responses in these neurons to reliable behavioral outputs. To test the hypothesis that neurophysiological complexity arises from differential expression of genes, we performed cell-specific transcriptomic profiling; this revealed between 18 and 62 genes with at least twofold higher expression in a specific CEM neuron subtype vs both other CEM neurons and adult males. These included two G protein-coupled receptor (GPCR) genes, srw-97 and dmsr-12, that were specifically expressed in nonoverlapping subsets of CEM neurons and whose expression was confirmed by GFP reporter analysis. Single CRISPR-Cas9 knockouts of either srw-97 or dmsr-12 resulted in partial defects, while a double knockout of both srw-97 and dmsr-12 completely abolished the attractive response to ascr#8. Together, our results suggest that the evolutionarily distinct GPCRs SRW-97 and DMSR-12 act nonredundantly in discrete olfactory neurons to facilitate male-specific sensation of ascr#8.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Feminino , Masculino , Caenorhabditis elegans/metabolismo , Transcriptoma , Neurônios/metabolismo , Feromônios/metabolismo , Sistema Nervoso/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
6.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33585863

RESUMO

Pleurotus mushrooms are among the most cultivated fungi in the world and are highly valuable for food, medicine, and biotechnology industries. Furthermore, Pleurotus species are carnivorous fungi; they can rapidly paralyze and kill nematodes when nutrient-deprived. The predator-prey interactions between Pleurotus and nematodes are still widely unexplored. Moreover, the molecular mechanisms and the genes involved in the carnivorous behavior of Pleurotus mushrooms remain a mystery. We are attempting to understand the interactions between Pleurotus mushrooms and their nematode prey through genetic and genomic analyses. Two single spores (ss2 and ss5) isolated from a fruiting body of Pleurotus pulmonarius exhibited significant differences in growth and toxicity against nematodes. Thus, using PacBio long reads, we assembled and annotated two high-quality genomes for these two isolates of P. pulmonarius. Each of these assemblies contains 23 scaffolds, including 6 (ss2) and 8 (ss5) telomere-to-telomere scaffolds, and they are among the most complete assembled genomes of the Pleurotus species. Comparative analyses identified the genomic differences between the two P. pulmonarius strains. In sum, this work provides a genomic resource that will be invaluable for better understanding the Italian oyster mushroom P. pulmonarius.


Assuntos
Agaricales , Pleurotus , Genômica , Itália
7.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33585864

RESUMO

The oyster mushroom Pleurotus ostreatus is a basidiomycete commonly found in the rotten wood and it is one of the most cultivated edible mushrooms globally. Pleurotus ostreatus is also a carnivorous fungus, which can paralyze and kill nematodes within minutes. However, the molecular mechanisms of the predator-prey interactions between P. ostreatus and nematodes remain unclear. PC9 and PC15 are two model strains of P. ostreatus and the genomes of both strains have been sequenced and deposited at the Joint Genome Institute (JGI). These two monokaryotic strains exhibit dramatic differences in growth, but because PC9 grows more robustly in laboratory conditions, it has become the strain of choice for many studies. Despite the fact that PC9 is the common strain for investigation, its genome is fragmentary and incomplete relative to that of PC15. To overcome this problem, we used PacBio long reads and Illumina sequencing to assemble and polish a more integrated genome for PC9. Our PC9 genome assembly, distributed across 17 scaffolds, is highly contiguous and includes five telomere-to-telomere scaffolds, dramatically improving the genome quality. We believe that our PC9 genome resource will be useful to the fungal research community investigating various aspects of P. ostreatus biology.


Assuntos
Agaricus , Pleurotus
8.
Nat Plants ; 6(6): 686-698, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32451448

RESUMO

Organ size and shape are precisely regulated to ensure proper function. The four sepals in each Arabidopsis thaliana flower must maintain the same size throughout their growth to continuously enclose and protect the developing bud. Here we show that DEVELOPMENT RELATED MYB-LIKE 1 (DRMY1) is required for both timing of organ initiation and proper growth, leading to robust sepal size in Arabidopsis. Within each drmy1 flower, the initiation of some sepals is variably delayed. Late-initiating sepals in drmy1 mutants remain smaller throughout development, resulting in variability in sepal size. DRMY1 focuses the spatiotemporal signalling patterns of the plant hormones auxin and cytokinin, which jointly control the timing of sepal initiation. Our findings demonstrate that timing of organ initiation, together with growth and maturation, contribute to robust organ size.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Citocininas/metabolismo , Proteínas de Ligação a DNA/genética , Ácidos Indolacéticos/metabolismo , Organogênese Vegetal/genética , Transdução de Sinais/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento
9.
Genome Res ; 29(6): 1009-1022, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31123080

RESUMO

Caenorhabditis elegans was the first multicellular eukaryotic genome sequenced to apparent completion. Although this assembly employed a standard C. elegans strain (N2), it used sequence data from several laboratories, with DNA propagated in bacteria and yeast. Thus, the N2 assembly has many differences from any C. elegans available today. To provide a more accurate C. elegans genome, we performed long-read assembly of VC2010, a modern strain derived from N2. Our VC2010 assembly has 99.98% identity to N2 but with an additional 1.8 Mb including tandem repeat expansions and genome duplications. For 116 structural discrepancies between N2 and VC2010, 97 structures matching VC2010 (84%) were also found in two outgroup strains, implying deficiencies in N2. Over 98% of N2 genes encoded unchanged products in VC2010; moreover, we predicted ≥53 new genes in VC2010. The recompleted genome of C. elegans should be a valuable resource for genetics, genomics, and systems biology.


Assuntos
Caenorhabditis elegans/genética , Genoma Helmíntico , Genômica , Animais , Proteínas de Caenorhabditis elegans/genética , Biologia Computacional/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Reprodutibilidade dos Testes
10.
PLoS Negl Trop Dis ; 13(4): e0007345, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31009474

RESUMO

BACKGROUND: Human hookworms (Necator americanus, Ancylostoma duodenale, and Ancylostoma ceylanicum) are intestinal blood-feeding parasites that infect ~500 million people worldwide and are among the leading causes of iron-deficiency anemia in the developing world. Drugs are useful against hookworm infections, but hookworms rapidly reinfect people, and the parasites can develop drug resistance. Therefore, having a hookworm vaccine would be of tremendous benefit. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the vaccine efficacy in outbred Syrian hamsters of three A. ceylanicum hookworm antigen candidates from two classes of proteins previously identified as promising vaccine candidates. These include two intestinally-enriched, putatively secreted cathepsin B cysteine proteases (AceyCP1, AceyCPL) and one small Kunitz-type protease inhibitor (AceySKPI3). Recombinant proteins were produced in Pichia pastoris, and adsorbed to Alhydrogel. Recombinant AceyCPL (rAceyCPL)/Alhydrogel and rAceySKPI3/Alhydrogel induced high serum immunoglobulin G (IgG) titers in 8/8 vaccinates, but were not protective. rAceyCP1/Alhydrogel induced intermediate serum IgG titers in ~60% of vaccinates in two different trials. rAceyCP1 serum IgG responders had highly significantly decreased hookworm burdens, fecal egg counts and clinical pathology compared to Alhydrogel controls and nonresponders. Protection was highly correlated with rAceyCP1 serum IgG titer. Antisera from rAceyCP1 serum IgG responders, but not nonresponders or rAceyCPL/Alhydrogel vaccinates, significantly reduced adult A. ceylanicum motility in vitro. Furthermore, rAceyCP1 serum IgG responders had canonical Th2-specific recall responses (IL4, IL5, IL13) in splenocytes stimulated ex vivo. CONCLUSIONS/SIGNIFICANCE: These findings indicate that rAceyCP1 is a promising vaccine candidate and validates a genomic/transcriptomic approach to human hookworm vaccine discovery.


Assuntos
Ancilostomíase/prevenção & controle , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/imunologia , Cisteína Proteases/imunologia , Vacinação , Sequência de Aminoácidos , Ancylostoma/imunologia , Animais , Antígenos de Superfície/imunologia , Modelos Animais de Doenças , Imunoglobulina G/sangue , Enteropatias Parasitárias/prevenção & controle , Masculino , Mesocricetus , Proteínas Recombinantes/imunologia , Vacinas/imunologia , Vacinas Sintéticas
11.
Dev Cell ; 49(4): 542-555.e9, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30956008

RESUMO

Biological roles for most long non-coding RNAs (lncRNAs) remain mysterious. Here, using forward genetics, we identify lep-5, a lncRNA acting in the C. elegans heterochronic (developmental timing) pathway. Loss of lep-5 delays hypodermal maturation and male tail tip morphogenesis (TTM), hallmarks of the juvenile-to-adult transition. We find that lep-5 is a ∼600 nt cytoplasmic RNA that is conserved across Caenorhabditis and possesses three essential secondary structure motifs but no essential open reading frames. lep-5 expression is temporally controlled, peaking prior to TTM onset. Like the Makorin LEP-2, lep-5 facilitates the degradation of LIN-28, a conserved miRNA regulator specifying the juvenile state. Both LIN-28 and LEP-2 associate with lep-5 in vivo, suggesting that lep-5 directly regulates LIN-28 stability and may function as an RNA scaffold. These studies identify a key biological role for a lncRNA: by regulating protein stability, it provides a temporal cue to facilitate the juvenile-to-adult transition.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , RNA Longo não Codificante/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Morfogênese/genética , Morfogênese/fisiologia , Mutação , Fenótipo , RNA Longo não Codificante/genética , Proteínas Repressoras/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Fatores de Transcrição/metabolismo
12.
Trends Parasitol ; 35(1): 72-84, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529253

RESUMO

Parasitic nematodes are important pathogens of animals, causing diseases that impact on agricultural production worldwide. Research on these worms has been constrained by a lack of genetic and genomic tools. Nonetheless, over the past decade this field has made substantial advances, many of which have been led by transcriptomic sequencing. The present review summarises major transcriptomic studies of veterinary parasitic nematodes in recent years, and comments on overarching themes stemming from this work that inform our understanding of parasitism. Finally, we comment on current, state-of-the-art informatic tools for the analysis of complex worm transcriptomes to extract maximum the molecular information from them.


Assuntos
Nematoides/genética , Infecções por Nematoides/veterinária , Parasitologia/tendências , Pesquisa/tendências , Transcriptoma , Medicina Veterinária/tendências , Animais , Biologia Computacional , Nematoides/classificação , Infecções por Nematoides/parasitologia
13.
Science ; 359(6371): 55-61, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29302007

RESUMO

To reveal impacts of sexual mode on genome content, we compared chromosome-scale assemblies of the outcrossing nematode Caenorhabditis nigoni to its self-fertile sibling species, C. briggsaeC. nigoni's genome resembles that of outcrossing relatives but encodes 31% more protein-coding genes than C. briggsaeC. nigoni genes lacking C. briggsae orthologs were disproportionately small and male-biased in expression. These include the male secreted short (mss) gene family, which encodes sperm surface glycoproteins conserved only in outcrossing species. Sperm from mss-null males of outcrossing C. remanei failed to compete with wild-type sperm, despite normal fertility in noncompetitive mating. Restoring mss to C. briggsae males was sufficient to enhance sperm competitiveness. Thus, sex has a pervasive influence on genome content that can be used to identify sperm competition factors.


Assuntos
Caenorhabditis/genética , Glicoproteínas/genética , Proteínas de Helminto/genética , Organismos Hermafroditas/genética , Autofertilização/genética , Espermatozoides/metabolismo , Animais , Caenorhabditis/classificação , Éxons , Genoma Helmíntico , Mutação INDEL , Íntrons , Masculino , Filogenia , Proteoma/genética
14.
Curr Biol ; 27(19): R1064-R1066, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-29017041

RESUMO

Most animals have male and female sexes, implying that sex is ancient and beneficial; yet some have survived for millions of years without sex. The genome of the parthenogenetic nematode Diploscapter pachys gives clues as to how 'ancient asexual' animals can exist.


Assuntos
Nematoides/genética , Rhabditoidea/genética , Animais , Feminino , Genoma , Masculino , Partenogênese/genética
15.
Elife ; 62017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098555

RESUMO

To study the molecular basis for predator-prey coevolution, we investigated how Caenorhabditis elegans responds to the predatory fungus Arthrobotrys oligospora. C. elegans and other nematodes were attracted to volatile compounds produced by A. oligospora. Gas-chromatographic mass-spectral analyses of A. oligospora-derived volatile metabolites identified several odors mimicking food cues attractive to nematodes. One compound, methyl 3-methyl-2-butenoate (MMB) additionally triggered strong sex- and stage-specific attraction in several Caenorhabditis species. Furthermore, when MMB is present, it interferes with nematode mating, suggesting that MMB might mimic sex pheromone in Caenorhabditis species. Forward genetic screening suggests that multiple receptors are involved in sensing MMB. Response to fungal odors involves the olfactory neuron AWCs. Single-cell RNA-seq revealed the GPCRs expressed in AWC. We propose that A. oligospora likely evolved the means to use olfactory mimicry to attract its nematode prey through the olfactory neurons in C. elegans and related species.


Assuntos
Ascomicetos/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Sinais (Psicologia) , Interações Hospedeiro-Patógeno , Feromônios/metabolismo , Animais , Cromatografia Gasosa-Espectrometria de Massas , Feromônios/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
16.
Nat Methods ; 14(2): 145-148, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27992408

RESUMO

The GAL4-UAS system is a powerful tool for manipulating gene expression, but its application in Caenorhabditis elegans has not been described. Here we systematically optimize the system's three main components to develop a temperature-optimized GAL4-UAS system (cGAL) that robustly controls gene expression in C. elegans from 15 to 25 °C. We demonstrate this system's utility in transcriptional reporter analysis, site-of-action experiments and exogenous transgene expression; and we provide a basic driver and effector toolkit.


Assuntos
Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Engenharia Genética/métodos , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Defecação/genética , Herpesvirus Humano 1/genética , Microscopia de Fluorescência , Optogenética , Temperatura
17.
Front Plant Sci ; 7: 1744, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27920789

RESUMO

Endoreduplication is a specialized cell cycle in which DNA replication occurs, but mitosis is skipped creating enlarged polyploid cells. Endoreduplication is associated with the differentiation of many specialized cell types. In the Arabidopsis thaliana sepal epidermis endoreduplicated giant cells form interspersed between smaller cells. Both the transcription factor Arabidopsis thaliana MERISTEM LAYER1 (ATML1) and the plant-specific cyclin dependent kinase inhibitor LOSS OF GIANT CELLS FROM ORGANS (LGO)/SIAMESE RELATED1 (SMR1) are required for the formation of giant cells. Overexpression of LGO is sufficient to produce sepals covered in highly endoreduplicated giant cells. Here we ask whether overexpression of LGO changes the transcriptome of these mature sepals. We show that overexpression of LGO in the epidermis (LGOoe) drives giant cell formation even in atml1 mutant sepals. Using RNA-seq we show that LGOoe has significant effects on the mature sepal transcriptome that are primarily ATML1-independent changes of gene activity. Genes activated by LGOoe, directly or indirectly, predominantly encode proteins involved in defense responses, including responses to wounding, insects (a predator of Arabidopsis), and fungus. They also encode components of the glucosinolate biosynthesis pathway, a key biochemical pathway in defense against herbivores. LGOoe-activated genes include previously known marker genes of systemic acquired resistance such as PR1 through PR5. The defensive functions promoted by LGOoe in sepals overlap with functions recently shown to be transcriptionally activated by hyperimmune cpr5 mutants in a LGO-dependent manner. Our findings show that the cell cycle regulator LGO can directly or indirectly drive specific states of gene expression; in particular, they are consistent with recent findings showing LGO to be necessary for transcriptional activation of many defense genes in Arabidopsis.

18.
Mol Biol Cell ; 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27654945

RESUMO

Microtubules contribute to many cellular processes, including transport, signaling, and chromosome separation during cell division (Kapitein and Hoogenraad, 2015). They are comprised of αß-tubulin heterodimers arranged into linear protofilaments and assembled into tubes. Eukaryotes express multiple tubulin isoforms (Gogonea et al., 1999), and there has been a longstanding debate as to whether the isoforms are redundant or perform specialized roles as part of a tubulin code (Fulton and Simpson, 1976). Here, we use the well-characterized touch receptor neurons (TRNs) of Caenorhabditis elegans to investigate this question, through genetic dissection of process outgrowth both in vivo and in vitro With single-cell RNA-seq, we compare transcription profiles for TRNs with those of two other sensory neurons, and present evidence that each sensory neuron expresses a distinct palette of tubulin genes. In the TRNs, we analyze process outgrowth and show that four tubulins (tba-1, tba-2, tbb-1, and tbb-2) function partially or fully redundantly, while two others (mec-7 and mec-12) perform specialized, context-dependent roles. Our findings support a model in which sensory neurons express overlapping subsets of tubulin genes whose functional redundancy varies between cell types and in vivo and in vitro contexts.

19.
Curr Biol ; 26(18): 2446-2455, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27546573

RESUMO

The genetic basis of sleep regulation remains poorly understood. In C. elegans, cellular stress induces sleep through epidermal growth factor (EGF)-dependent activation of the EGF receptor in the ALA neuron. The downstream mechanism by which this neuron promotes sleep is unknown. Single-cell RNA sequencing of ALA reveals that the most highly expressed, ALA-enriched genes encode neuropeptides. Here we have systematically investigated the four most highly enriched neuropeptides: flp-7, nlp-8, flp-24, and flp-13. When individually removed by null mutation, these peptides had little or no effect on stress-induced sleep. However, stress-induced sleep was abolished in nlp-8; flp-24; flp-13 triple-mutant animals, indicating that these neuropeptides work collectively in controlling stress-induced sleep. We tested the effect of overexpression of these neuropeptide genes on five behaviors modulated during sleep-pharyngeal pumping, defecation, locomotion, head movement, and avoidance response to an aversive stimulus-and we found that, if individually overexpressed, each of three neuropeptides (nlp-8, flp-24, or flp-13) induced a different suite of sleep-associated behaviors. These overexpression results raise the possibility that individual components of sleep might be specified by individual neuropeptides or combinations of neuropeptides.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Neuropeptídeos/genética , Sono/genética , Estresse Fisiológico , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuropeptídeos/metabolismo
20.
F1000Res ; 4: 900, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26535114

RESUMO

The khmer package is a freely available software library for working efficiently with fixed length DNA words, or k-mers. khmer provides implementations of a probabilistic k-mer counting data structure, a compressible De Bruijn graph representation, De Bruijn graph partitioning, and digital normalization. khmer is implemented in C++ and Python, and is freely available under the BSD license at  https://github.com/dib-lab/khmer/.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...