Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38487392

RESUMO

The change in surface stress associated with the adsorption and oxidative stripping of carbon monoxide (CO) on (111)-textured Pt is examined using the wafer curvature method in 0.1 mol/L KHCO3 electrolyte. The curvature of the Pt cantilever electrode was monitored as a function of potential in both CO-free and CO-saturated electrolytes. Although CO adsorbs as a neutral molecule, significant compressive stress, up to -1.3 N/m, is induced in the Pt. The magnitude of the stress change correlates directly with the CO coverage and, within the detection limits of the stress measurement, is elastically reversible. Density functional theory calculations of a CO-bound Pt surface indicate that charge redistribution from the first atomic layer of Pt to subsurface layers accounts for the observed compressive stress induced by the charge neutral adsorption of CO. A better understanding of adsorbate-induced surface stress is critical for the development of material platforms for sensing and catalysis.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34194601

RESUMO

Adsorbates impact the surface stability and reactivity of metallic electrodes, affecting the corrosion, dissolution, and deposition behavior. Here, we use density functional theory (DFT) and DFT-based Behler-Parrinello neural networks (BPNN) to investigate the geometries, surface formation energies, and atom removal energies of stepped and kinked surfaces vicinal to Cu(100) with a c(2×2) Cl adlayer. DFT calculations indicate that the stable structures for the adsorbate-free vicinal surfaces favor steps with <110> orientation, while the addition of the c(2×2) Cl adlayer leads to <100> step facets, in agreement with scanning tunneling microscopy (STM) observations. The BPNN calculations produce energies in good agreement with DFT results (root mean square error of 1.3 meV/atom for a randomly chosen set of structures excluded from the training set). We draw three conclusions from the BPNN calculations. First, Cl on the upper <100> step edges occupies the three fold hollow sites (as opposed to the four-fold sites on the terraces), congruent with deviations of the STM height profile for the adsorbate at the upper step edge. Second, disruptions in the continuity of the halide overlayer at the steps result in significant long-range step-step interactions. Third, anisotropic metal dissolution and deposition energetics arise from phase shifts of the c(2×2) adlayer at orthogonal <100> steps. This DFT-BPNN approach offers an effective strategy for tackling large-scale surface structure challenges with atomic-level accuracy.

3.
J Phys Chem C Nanomater Interfaces ; 122(29): 16756-16764, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258524

RESUMO

The effect of the alkali-metal cation (Li+, Na+, K+, and Cs+) on the non-Nernstian pH shift of the Pt(554) and Pt(533) step-associated voltammetric peak is elucidated over a wide pH window (1-13), through computation and experiment. In conjunction with our previously reported study on Pt(553), the non-Nernstian pH shift of the step-induced peak is found to be independent of the step density and the step orientation. In our prior work, we explained the sharp peak as due to the exchange between adsorbed hydrogen and hydroxyl along the step and the non-Nernstian shift as a result of the adsorption of an alkali-metal cation and its subsequent weakening of hydroxyl adsorption. Our density functional theory results support this same mechanism on Pt(533) and capture the effect of alkali-metal cation identity and alkali cation coverage well, where increasing electrolyte pH and cation concentration leads to increased cation coverage and a greater weakening effect on hydroxide adsorption. This work paints a consistent picture for the mechanism of these effects, expanding our fundamental understanding of the electrode/electrolyte interface and practical ability to control hydrogen and hydroxyl adsorption thermodynamics via the electrolyte composition, important for improving fuel cell and electrolyzer performance.

4.
J Chem Phys ; 148(14): 144105, 2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29655358

RESUMO

Reliable first-principles calculations of electrochemical processes require accurate prediction of the interfacial capacitance, a challenge for current computationally efficient continuum solvation methodologies. We develop a model for the double layer of a metallic electrode that reproduces the features of the experimental capacitance of Ag(100) in a non-adsorbing, aqueous electrolyte, including a broad hump in the capacitance near the potential of zero charge and a dip in the capacitance under conditions of low ionic strength. Using this model, we identify the necessary characteristics of a solvation model suitable for first-principles electrochemistry of metal surfaces in non-adsorbing, aqueous electrolytes: dielectric and ionic nonlinearity, and a dielectric-only region at the interface. The dielectric nonlinearity, caused by the saturation of dipole rotational response in water, creates the capacitance hump, while ionic nonlinearity, caused by the compactness of the diffuse layer, generates the capacitance dip seen at low ionic strength. We show that none of the previously developed solvation models simultaneously meet all these criteria. We design the nonlinear electrochemical soft-sphere solvation model which both captures the capacitance features observed experimentally and serves as a general-purpose continuum solvation model.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35530257

RESUMO

In this work we investigate the effects of the diffuse double layer thickness on the electrochemical Stark tuning and oxidation of carbon monoxide at Pt(111) surfaces in perchloric acid solution. The diffuse double layer thickness was modified by changing the concentration (ionic strength) of the supporting electrolyte. The Stark tuning slope of the adsorbed CO was evaluated with Fourier Transformed Infrared Spectroscopy, and the CO oxidation was monitored with cyclic voltammetry. The results show that both electrochemical Stark tuning and oxidation are independent of the HClO4 concentration of the supporting electrolyte, revealing the absence of diffuse layer effects on the aqueous Pt(111)/CO system. By comparison to previously reported theoretical calculations, we attribute this insensitivity to the special double layer structure of Pt(111)/CO, in which the potential drop occurs primarily between the terminating oxygen of the adsorbed CO adlayer and first water layer of the electrolyte, making the properties of adsorbed CO nearly independent of the ionic strength of the electrolyte.

6.
J Phys Chem Lett ; 8(21): 5344-5348, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29040805

RESUMO

The distribution of electric fields within the electrochemical double layer depends on both the electrode and electrolyte in complex ways. These fields strongly influence chemical dynamics in the electrode-electrolyte interface but cannot be measured directly with submolecular resolution. We report experimental capacitance measurements for aqueous interfaces of CO-terminated Pt(111). By comparing these measurements with first-principles density functional theory (DFT) calculations, we infer microscopic field distributions and decompose contributions to the inverse capacitance from various spatial regions of the interface. We find that the CO is strongly electronically coupled to the Pt and that most of the interfacial potential difference appears across the gap between the terminating O and water and not across the CO molecule, as previously hypothesized. This "gap capacitance" resulting from hydrophobic termination lowers the overall capacitance of the aqueous Pt-CO interface and makes it less sensitive to electrolyte concentration compared to the bare metal.

7.
Angew Chem Int Ed Engl ; 56(47): 15025-15029, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-28987066

RESUMO

The successful deployment of advanced energy-conversion systems depends critically on our understanding of the fundamental interactions of the key adsorbed intermediates (hydrogen *H and hydroxyl *OH) at electrified metal-aqueous electrolyte interfaces. The effect of alkali metal cations (Li+ , Na+ , K+ , Cs+ ) on the non-Nernstian pH shift of the step-related voltammetric peak of the Pt(553) electrode is investigated over a wide pH window (1 to 13) by means of experimental and computational methods. The co-adsorbed alkali cations along the step weaken the OH adsorption at the step sites, causing a positive shift of the potential of the step-related peak on Pt(553). Density functional calculations explain the observations on the identity and concentration of alkali cations on the non-Nernstian pH shift, and demonstrate that cation-hydroxyl co-adsorption causes the apparent pH dependence of "hydrogen" adsorption in the step sites of platinum electrodes.

8.
SoftwareX ; 6: 278-284, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29892692

RESUMO

Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) that combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.

9.
Phys Chem Chem Phys ; 17(32): 20805-13, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26214401

RESUMO

The oxidation of small organic acids on noble metal surfaces under electrocatalytic conditions is important for the operation of fuel cells and is of scientific interest, but the basic reaction mechanisms continue to be a matter of debate. Formic acid oxidation on platinum is one of the simplest of these reactions, yet even this model system remains poorly understood. Historically, proposed mechanisms for the oxidation of formic acid involve the acid molecule as a reactant, but recent studies suggest that the formate anion is the reactant. Ab initio studies of this reaction do not address formate as a possible reactant, likely because of the difficulty of calculating a charged species near a charged solvated surface under potential control. Using the recently-developed joint density functional theory (JDFT) framework for electrochemistry, we perform ab initio calculations on a Pt(111) surface to explore this reaction and help resolve the debate. We find that when a formate anion approaches the platinum surface at typical operating voltages, with H pointing towards the surface, it reacts to form CO2 and adsorbed H with no barrier on a clean Pt surface. This mechanism leads to a reaction rate proportional to formate concentration and number of available platinum sites. Additionally, high coverages of adsorbates lead to large reaction barriers, and consequently, we expect the availability of metal sites to limit the experimentally observed reaction rate.

10.
J Chem Phys ; 142(21): 214101, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26049473

RESUMO

The microscopic dielectric response is a key quantity for electronic materials such as organic semiconductors. Calculations of this response for molecular crystals are currently either expensive or rely on extreme simplifications such as multipole expansions which lack microscopic detail. We present an alternate approach using a microscopic analogue of the Clausius-Mossotti equation, which constructs the dielectric response of a crystal from an eigenvalue decomposition of the dielectric response of individual molecules. This method can potentially be used to examine the effects of defects, disorder, and surfaces on the dielectric properties of molecular solids.

11.
J Chem Phys ; 142(5): 054102, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25662631

RESUMO

Continuum solvation models enable electronic structure calculations of systems in liquid environments, but because of the large number of empirical parameters, they are limited to the class of systems in their fit set (typically organic molecules). Here, we derive a solvation model with no empirical parameters for the dielectric response by taking the linear response limit of a classical density functional for molecular liquids. This model directly incorporates the nonlocal dielectric response of the liquid using an angular momentum expansion, and with a single fit parameter for dispersion contributions it predicts solvation energies of neutral molecules with a RMS error of 1.3 kcal/mol in water and 0.8 kcal/mol in chloroform and carbon tetrachloride. We show that this model is more accurate for strongly polar and charged systems than previous solvation models because of the parameter-free electric response, and demonstrate its suitability for ab initio solvation, including self-consistent solvation in quantum Monte Carlo calculations.

12.
Nano Lett ; 14(3): 1453-9, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24548177

RESUMO

A major challenge in the development of new battery materials is understanding their fundamental mechanisms of operation and degradation. Their microscopically inhomogeneous nature calls for characterization tools that provide operando and localized information from individual grains and particles. Here, we describe an approach that enables imaging the nanoscale distribution of ions during electrochemical charging of a battery in a transmission electron microscope liquid flow cell. We use valence energy-loss spectroscopy to track both solvated and intercalated ions, with electronic structure fingerprints of the solvated ions identified using an ab initio nonlinear response theory. Equipped with the new electrochemical cell holder, nanoscale spectroscopy and theory, we have been able to determine the lithiation state of a LiFePO4 electrode and surrounding aqueous electrolyte in real time with nanoscale resolution during electrochemical charge and discharge. We follow lithium transfer between electrode and electrolyte and image charging dynamics in the cathode. We observe competing delithiation mechanisms such as core-shell and anisotropic growth occurring in parallel for different particles under the same conditions. This technique represents a general approach for the operando nanoscale imaging of electrochemically active ions in the electrode and electrolyte in a wide range of electrical energy storage systems.

13.
Adv Mater ; 23(5): 624-8, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21274909

RESUMO

Spatial maps of topography and trapped charge are acquired for polycrystalline pentacene thin-film transistors using electric and atomic force microscopy. In regions of trapped charge, the rate of trap clearing is studied as a function of the wavelength of incident radiation.


Assuntos
Microscopia , Naftacenos/química , Análise Espectral , Transistores Eletrônicos , Absorção , Elétrons , Teoria Quântica , Fatores de Tempo
14.
Biopolymers ; 83(3): 255-67, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16767740

RESUMO

The 32-residue leucine zipper subsequence, called here Jun-lz, associates in benign media to form a parallel two-stranded coiled coil. Studies are reported of its thermal unfolding/folding transition by circular dichroism (CD) on samples of natural isotopic abundance and by both equilibrium and spin inversion transfer (SIT) nuclear magnetic resonance (NMR) on samples labeled at the leucine-18 alpha-carbon with 99% 13C. The data cover a wide range of temperature and concentration, and show that Jun-lz unfolds below room temperature, being far less stable than some other leucine zippers such as GCN4. 13C-NMR shows two well-separated resonances. We ascribe the upfield one to 13C spins on unfolded single chains and the downfield one to 13C spins on coiled-coil dimers. Their relative intensities provide a measure of the unfolding equilibrium constant. In SIT NMR, the recovery of the equilibrium magnetization after one resonance is inverted is modulated in part by the unfolding and folding rate constants, which are accessible from the data. Global Bayesian analysis of the equilibrium and SIT NMR data provide values for the standard enthalpy, entropy, and heat capacity of unfolding, and show the latter to be unusually large. The CD results are compatible with the NMR findings. Global Bayesian analysis of the SIT NMR data yields the corresponding activation parameters for unfolding and folding. The results show that both reaction directions are activated processes. Activation for unfolding is entropy driven, enthalpy opposed. Activation for folding is strongly enthalpy opposed and somewhat entropy opposed, falsifying the idea that the barrier for folding is solely due to a purely entropic search for properly registered partners. The activation heat capacity is much larger for folding, so almost the entire overall change is due to the folding direction. This latter finding, if it applies to GCN4 leucine zippers, clears up an extant apparent disagreement between folding rate constants for GCN4 as determined by chevron analysis and NMR in differing temperature regimes.


Assuntos
Zíper de Leucina , Leucina/química , Ressonância Magnética Nuclear Biomolecular/métodos , Dobramento de Proteína , Isótopos de Carbono , Dicroísmo Circular , Temperatura Alta , Cinética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...