Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol NMR ; 77(4): 149-163, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37237169

RESUMO

The accelerated acquisition of multidimensional NMR spectra using sparse non-uniform sampling (NUS) has been widely adopted in recent years. The key concept in NUS is that a major part of the data is omitted during measurement, and then reconstructed using, for example, compressed sensing (CS) methods. CS requires spectra to be compressible, that is, they should contain relatively few "significant" points. The more compressible the spectrum, the fewer experimental NUS points needed in order for it to be accurately reconstructed. In this paper we show that the CS processing of similar spectra can be enhanced by reconstructing only the differences between them. Accurate reconstruction can be obtained at lower sampling levels as the difference is sparser than the spectrum itself. In many situations this method is superior to "conventional" compressed sensing. We exemplify the concept of "difference CS" with one such case-the study of alpha-synuclein binding to liposomes and its dependence on temperature. To obtain information on temperature-dependent transitions between different states, we need to acquire several dozen spectra at various temperatures, with and without the presence of liposomes. Our detailed investigation reveals that changes in the binding modes of the alpha-synuclein ensemble are not only temperature-dependent but also show non-linear behavior in their transitions. Our proposed CS processing approach dramatically reduces the number of NUS points required and thus significantly shortens the experimental time.


Assuntos
Lipossomos , alfa-Sinucleína , Ressonância Magnética Nuclear Biomolecular/métodos , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética
2.
Proc Natl Acad Sci U S A ; 120(15): e2201910120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37027427

RESUMO

α-synuclein (αS) is an intrinsically disordered protein whose functional ambivalence and protein structural plasticity are iconic. Coordinated protein recruitment ensures proper vesicle dynamics at the synaptic cleft, while deregulated oligomerization on cellular membranes contributes to cell damage and Parkinson's disease (PD). Despite the protein's pathophysiological relevance, structural knowledge is limited. Here, we employ NMR spectroscopy and chemical cross-link mass spectrometry on 14N/15N-labeled αS mixtures to provide for the first time high-resolution structural information of the membrane-bound oligomeric state of αS and demonstrate that in this state, αS samples a surprisingly small conformational space. Interestingly, the study locates familial Parkinson's disease mutants at the interface between individual αS monomers and reveals different oligomerization processes depending on whether oligomerization occurs on the same membrane surface (cis) or between αS initially attached to different membrane particles (trans). The explanatory power of the obtained high-resolution structural model is used to help determine the mode-of-actionof UCB0599. Here, it is shown that the ligand changes the ensemble of membrane-bound structures, which helps to explain the success this compound, currently being tested in Parkinson's disease patients in a phase 2 trial, has had in animal models of PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Membranas/metabolismo , Membrana Celular/metabolismo , Espectroscopia de Ressonância Magnética , Antiparkinsonianos/metabolismo
3.
Sci Adv ; 7(22)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34049882

RESUMO

In sarcomeres, α-actinin cross-links actin filaments and anchors them to the Z-disk. FATZ (filamin-, α-actinin-, and telethonin-binding protein of the Z-disk) proteins interact with α-actinin and other core Z-disk proteins, contributing to myofibril assembly and maintenance. Here, we report the first structure and its cellular validation of α-actinin-2 in complex with a Z-disk partner, FATZ-1, which is best described as a conformational ensemble. We show that FATZ-1 forms a tight fuzzy complex with α-actinin-2 and propose an interaction mechanism via main molecular recognition elements and secondary binding sites. The obtained integrative model reveals a polar architecture of the complex which, in combination with FATZ-1 multivalent scaffold function, might organize interaction partners and stabilize α-actinin-2 preferential orientation in Z-disk. Last, we uncover FATZ-1 ability to phase-separate and form biomolecular condensates with α-actinin-2, raising the question whether FATZ proteins can create an interaction hub for Z-disk proteins through membraneless compartmentalization during myofibrillogenesis.

4.
PLoS Biol ; 19(4): e3001148, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33844684

RESUMO

Sarcomeres, the basic contractile units of striated muscle cells, contain arrays of thin (actin) and thick (myosin) filaments that slide past each other during contraction. The Ig-like domain-containing protein myotilin provides structural integrity to Z-discs-the boundaries between adjacent sarcomeres. Myotilin binds to Z-disc components, including F-actin and α-actinin-2, but the molecular mechanism of binding and implications of these interactions on Z-disc integrity are still elusive. To illuminate them, we used a combination of small-angle X-ray scattering, cross-linking mass spectrometry, and biochemical and molecular biophysics approaches. We discovered that myotilin displays conformational ensembles in solution. We generated a structural model of the F-actin:myotilin complex that revealed how myotilin interacts with and stabilizes F-actin via its Ig-like domains and flanking regions. Mutant myotilin designed with impaired F-actin binding showed increased dynamics in cells. Structural analyses and competition assays uncovered that myotilin displaces tropomyosin from F-actin. Our findings suggest a novel role of myotilin as a co-organizer of Z-disc assembly and advance our mechanistic understanding of myotilin's structural role in Z-discs.


Assuntos
Actinas/metabolismo , Multimerização Proteica , Sarcômeros/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/genética , Animais , Células Cultivadas , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Humanos , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Contração Muscular/genética , Músculo Esquelético/metabolismo , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Multimerização Proteica/genética , Sarcômeros/genética , Tropomiosina/química , Tropomiosina/genética , Tropomiosina/metabolismo
5.
J Phys Chem B ; 125(11): 2929-2941, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33719460

RESUMO

α-Synuclein (αS) is a presynaptic protein that binds to cell membranes and is linked to Parkinson's disease (PD). Binding of αS to membranes is a likely first step in the molecular pathophysiology of PD. The αS molecule can adopt multiple conformations, being largely disordered in water, adopting a ß-sheet conformation when present in amyloid fibrils, and forming a dynamic multiplicity of α-helical conformations when bound to lipid bilayers and related membrane-mimetic surfaces. Multiscale molecular dynamics simulations in conjunction with nuclear magnetic resonance (NMR) and cross-linking mass spectrometry (XLMS) measurements are used to explore the interactions of αS with an anionic lipid bilayer. The simulations and NMR measurements together reveal a break in the helical structure of the central non-amyloid-ß component (NAC) region of αS in the vicinity of residues 65-70, which may facilitate subsequent oligomer formation. Coarse-grained simulations of αS starting from the structure of αS when bound to a detergent micelle reveal the overall pattern of protein contacts to anionic lipid bilayers, while subsequent all-atom simulations provide details of conformational changes upon membrane binding. In particular, simulations and NMR data for liposome-bound αS indicate incipient ß-strand formation in the NAC region, which is supported by intramolecular contacts seen via XLMS and simulations. Markov state models based on the all-atom simulations suggest a mechanism of conformational change of membrane-bound αS via a dynamic helix break in the region of residue 65 in the NAC region. The emergent dynamic model of membrane-interacting αS advances our understanding of the mechanism of PD, potentially aiding the design of novel therapeutic approaches.


Assuntos
Simulação de Dinâmica Molecular , alfa-Sinucleína , Espectroscopia de Ressonância Magnética , Ligação Proteica , Estrutura Secundária de Proteína , alfa-Sinucleína/metabolismo
6.
J Biomol NMR ; 74(4-5): 257-265, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32239382

RESUMO

Intrinsically disordered proteins (IDPs) are challenging established structural biology perception and urge a reassessment of the conventional understanding of the subtle interplay between protein structure and dynamics. Due to their importance in eukaryotic life and central role in protein interaction networks, IDP research is a fascinating and highly relevant research area in which NMR spectroscopy is destined to be a key player. The flexible nature of IDPs, as a result of the sampling of a vast conformational space, however, poses a tremendous scientific challenge, both technically and theoretically. Pronounced signal averaging results in narrow signal dispersion and requires higher dimensionality NMR techniques. Moreover, a fundamental problem in the structural characterization of IDPs is the definition of the conformational ensemble sampled by the polypeptide chain in solution, where often the interpretation relies on the concept of 'residual structure' or 'conformational preference'. An important source of structural information is information-rich NMR experiments that probe protein backbone dihedral angles in a unique manner. Cross-correlated relaxation experiments have proven to fulfil this task as they provide unique information about protein backbones, particularly in IDPs. Here we present a novel cross-correlation experiment that utilizes non-uniform sampling detection schemes to resolve protein backbone dihedral ambiguities in IDPs. The sensitivity of this novel technique is illustrated with an application to the prototypical IDP [Formula: see text]-Synculein for which unexpected deviations from random-coil-like behaviour could be observed.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Humanos , Ubiquitina/química , alfa-Sinucleína/química
7.
J Mol Biol ; 430(16): 2439-2452, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29733855

RESUMO

Molecular recognition of and by intrinsically disordered proteins (IDPs) is an intriguing and still largely elusive phenomenon. Typically, protein recognition involving IDPs requires either folding upon binding or, alternatively, the formation of "fuzzy complexes." Here we show via correlation analyses of paramagnetic relaxation enhancement data unprecedented and striking alterations of the concerted fluctuations within the conformational ensemble of IDPs upon ligand binding. We study the binding of α-synuclein to calmodulin, a ubiquitous calcium-binding protein, and the binding of the extracellular matrix IDP osteopontin to heparin, a mimic of the extracellular matrix ligand hyaluronic acid. In both cases, binding leads to reduction of correlated long-range motions in these two IDPs and thus indicates a loosening of structural compaction upon binding. Most importantly, however, the simultaneous presence of correlated and anti-correlated fluctuations in IDPs suggests the prevalence of "energetic frustration" and provides an explanation for the puzzling observation of disordered allostery in IDPs.


Assuntos
Calmodulina/metabolismo , Heparina/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Regulação Alostérica , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Osteopontina/química , Osteopontina/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
8.
Phys Chem Chem Phys ; 19(16): 10651-10656, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28397898

RESUMO

A novel statistical analysis of paramagnetic relaxation enhancement (PRE) and paramagnetic relaxation interference (PRI) based nuclear magnetic resonance (NMR) data is proposed based on the computation of correlation matrices. The technique is demonstrated with an example of the intrinsically disordered proteins (IDPs) osteopontin (OPN) and brain acid soluble protein 1 (BASP1). The correlation analysis visualizes in detail the subtleties of conformational averaging in IDPs and highlights the presence of correlated structural fluctuations of individual sub-domains in IDPs.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Ressonância Magnética Nuclear Biomolecular , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Osteopontina/química , Osteopontina/metabolismo , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo
9.
Brain ; 139(Pt 12): 3217-3236, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27679481

RESUMO

Abnormal accumulation and propagation of the neuronal protein α-synuclein has been hypothesized to underlie the pathogenesis of Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. Here we report a de novo-developed compound (NPT100-18A) that reduces α-synuclein toxicity through a novel mechanism that involves displacing α-synuclein from the membrane. This compound interacts with a domain in the C-terminus of α-synuclein. The E83R mutation reduces the compound interaction with the 80-90 amino acid region of α-synuclein and prevents the effects of NPT100-18A. In vitro studies showed that NPT100-18A reduced the formation of wild-type α-synuclein oligomers in membranes, reduced the neuronal accumulation of α-synuclein, and decreased markers of cell toxicity. In vivo studies were conducted in three different α-synuclein transgenic rodent models. Treatment with NPT100-18A ameliorated motor deficits in mThy1 wild-type α-synuclein transgenic mice in a dose-dependent manner at two independent institutions. Neuropathological examination showed that NPT100-18A decreased the accumulation of proteinase K-resistant α-synuclein aggregates in the CNS and was accompanied by the normalization of neuronal and inflammatory markers. These results were confirmed in a mutant line of α-synuclein transgenic mice that is prone to generate oligomers. In vivo imaging studies of α-synuclein-GFP transgenic mice using two-photon microscopy showed that NPT100-18A reduced the cortical synaptic accumulation of α-synuclein within 1 h post-administration. Taken together, these studies support the notion that altering the interaction of α-synuclein with the membrane might be a feasible therapeutic approach for developing new disease-modifying treatments of Parkinson's disease and other synucleinopathies.


Assuntos
Antiparkinsonianos/farmacologia , Comportamento Animal/efeitos dos fármacos , Descoberta de Drogas , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Transgênicos
10.
Biochemistry ; 53(33): 5444-60, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25093911

RESUMO

Uptake of neurotransmitters by sodium-coupled monoamine transporters of the NSS family is required for termination of synaptic transmission. Transport is tightly regulated by protein-protein interactions involving the small cytoplasmic segments at the amino- and carboxy-terminal ends of the transporter. Although structures of homologues provide information about the transmembrane regions of these transporters, the structural arrangement of the terminal domains remains largely unknown. Here, we combined molecular modeling, biochemical, and biophysical approaches in an iterative manner to investigate the structure of the 82-residue N-terminal and 30-residue C-terminal domains of human serotonin transporter (SERT). Several secondary structures were predicted in these domains, and structural models were built using the Rosetta fragment-based methodology. One-dimensional (1)H nuclear magnetic resonance and circular dichroism spectroscopy supported the presence of helical elements in the isolated SERT N-terminal domain. Moreover, introducing helix-breaking residues within those elements altered the fluorescence resonance energy transfer signal between terminal cyan fluorescent protein and yellow fluorescent protein tags attached to full-length SERT, consistent with the notion that the fold of the terminal domains is relatively well-defined. Full-length models of SERT that are consistent with these and published experimental data were generated. The resultant models predict confined loci for the terminal domains and predict that they move apart during the transport-related conformational cycle, as predicted by structures of homologues and by the "rocking bundle" hypothesis, which is consistent with spectroscopic measurements. The models also suggest the nature of binding to regulatory interaction partners. This study provides a structural context for functional and regulatory mechanisms involving SERT terminal domains.


Assuntos
Modelos Moleculares , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Citoplasma/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
11.
ChemistryOpen ; 3(3): 115-23, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25050230

RESUMO

Protein-protein interactions are of utmost importance to an understanding of biological phenomena since non-covalent and therefore reversible couplings between basic proteins leads to the formation of complex regulatory and adaptive molecular systems. Such systems are capable of maintaining their integrity and respond to external stimuli, processes intimately related to living organisms. These interactions, however, span a wide range of dissociation constants, from sub-nanomolar affinities in tight complexes to high-micromolar or even millimolar affinities in weak, transiently formed protein complexes. Herein, we demonstrate how novel NMR and EPR techniques can be used for the characterization of weak protein-protein (ligand) complexes. Applications to intrinsically disordered proteins and transiently formed protein complexes illustrate the potential of these novel techniques to study hitherto unobserved (and unobservable) higher-order structures of proteins.

12.
Angew Chem Int Ed Engl ; 53(15): 3840-3, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24604825

RESUMO

Intrinsically disordered proteins (IDPs) play crucial roles in protein interaction networks and in this context frequently constitute important hubs and interfaces. Here we show by a combination of NMR and EPR spectroscopy that the binding of the cytokine osteopontin (OPN) to its natural ligand, heparin, is accompanied by thermodynamically compensating structural adaptations. The core segment of OPN expands upon binding. This "unfolding-upon-binding" is governed primarily through electrostatic interactions between heparin and charged patches along the protein backbone and compensates for entropic penalties due to heparin-OPN binding. It is shown how structural unfolding compensates for entropic losses through ligand binding in IDPs and elucidates the interplay between structure and thermodynamics of rapid substrate-binding and -release events in IDP interaction networks.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Mapas de Interação de Proteínas/fisiologia , Espectroscopia de Ressonância Magnética , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Termodinâmica
13.
Biochemistry ; 52(31): 5167-75, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23848319

RESUMO

Intrinsically disordered proteins (IDPs) constitute a class of biologically active proteins that lack defined tertiary and often secondary structure. The IDP Osteopontin (OPN), a cytokine involved in metastasis of several types of cancer, is shown to simultaneously sample extended, random coil-like conformations and stable, cooperatively folded conformations. By a combination of two magnetic resonance methods, electron paramagnetic resonance and nuclear magnetic resonance spectroscopy, we demonstrate that the OPN ensemble exhibits not only characteristics of an extended and flexible polypeptide, as expected for an IDP, but also simultaneously those of globular proteins, in particular sigmoidal structural denaturation profiles. Both types of states, extended and cooperatively folded, are populated simultaneously by OPN in its apo state. The heterogeneity of the structural properties of IDPs is thus shown to even involve cooperative folding and unfolding events.


Assuntos
Proteínas Aviárias/química , Osteopontina/química , Codorniz , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinética , Ressonância Magnética Nuclear Biomolecular , Osteopontina/genética , Osteopontina/metabolismo , Conformação Proteica , Dobramento de Proteína , Desdobramento de Proteína , Codorniz/genética , Codorniz/metabolismo
14.
Protein Sci ; 22(9): 1196-205, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23821606

RESUMO

Intrinsically disordered proteins (IDPs) are characterized by substantial conformational plasticity and undergo rearrangements of the time-averaged conformational ensemble on changes of environmental conditions (e.g., in ionic strength, pH, molecular crowding). In contrast to stably folded proteins, IDPs often form compact conformations at acidic pH. The biological relevance of this process was, for example, demonstrated by nuclear magnetic resonance studies of the aggregation prone (low pH) state of α-synuclein. In this study, we report a large-scale analysis of the pH dependence of disordered proteins using the recently developed meta-structure approach. The meta-structure analysis of a large set of IDPs revealed a significant tendency of IDPs to form α-helical secondary structure elements and to preferentially fold into more compact structures under acidic conditions. The predictive validity of this novel approach was demonstrated with applications to the tumor-suppressor BASP1 and the transcription factor Tcf4.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Prótons , Proteínas Repressoras/química , Fatores de Transcrição/química , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Concentração Osmolar , Conformação Proteica , Fator de Transcrição 4
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...