Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 33(9): 1634-1642, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35995426

RESUMO

Fluorescent DNA probes were prepared in a modular approach using the "click" post-synthetic modification strategy. The new glycol-based module and DNA building block place just two carbons between the phosphodiester bridges and anchor the dye by an additional alkyne group. This creates a stereocenter in the middle of this artificial nucleoside substitute. Both enantiomers and a variety of photostable cyanine-styryl dyes as well as thiazole orange derivatives were screened as "clicked" conjugates in different surrounding DNA sequences. The combination of the (S)-configured DNA anchor and the cyanylated cyanine-styryl dye shows the highest fluorescence light-up effect of 9.2 and a brightness of approximately 11,000 M-1 cm-1. This hybridization sensitivity and fluorescence readout were further developed utilizing electron transfer and energy transfer processes. The combination of the hybridization-sensitive DNA building block with the nucleotide of 5-nitroindole as an electron acceptor and a quencher increases the light-up effect to 20 with the DNA target and to 15 with the RNA target. The fluorescence readout could significantly be enhanced to values between 50 and 360 by the use of energy transfer to a second DNA probe with commercially available dyes, like Cy3.5, Cy5, and Atto590, as energy acceptors at the 5'-end. The latter binary probes shift the fluorescent readout from the range of 500-550 nm to the range of 610-670 nm. The optical properties make these fluorescent DNA probes potentially useful for RNA imaging. Due to the strong light-up effect, they will not require washing procedures and will thus be suitable for live-cell imaging.


Assuntos
Corantes Fluorescentes , RNA , Alcinos , DNA , Sondas de DNA , Glicóis , Nucleosídeos , Nucleotídeos
2.
Chem Sci ; 9(31): 6557-6563, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30310587

RESUMO

A new set of cyanine-indole dyes was synthesized, characterized by optical and cytotoxic properties and subsequently applied for live cell imaging. Furthermore, these dyes were postsynthetically linked covalently to the 2'-position of uridine anchors in presynthesized oligonucleotides using the copper(i)-catalyzed azide-alkyne cycloaddition in order to evaluate their photostability and imaging properties in living cells. The nucleophilicity at position C-2 of the indole part of the dyes was elucidated as key for a new structure-activity relationship that served as a rational guide to improve the photostability and optical properties of these green-emitting dyes for live cell imaging of nucleic acids. While the photostability rises exponentially with decreasing nucleophilicity, thermal bleaching experiments confirmed an opposite trend supposing that the superoxide radical anion is mainly responsible for the photobleaching of the dyes. Furthermore, the cytotoxicities of the dyes were tested in HeLa cells and moderate to low LD50 values were obtained. This interdisciplinary strategy allowed us to identify one dye with excellent optical properties and even better photostability and decreased cytotoxicity compared to a cyanine-indole dye that bears an additional cyclooctatetraene group as a triplet state quencher.

3.
Curr Protoc Nucleic Acid Chem ; 72(1): 4.80.1-4.80.13, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29927126

RESUMO

Fluorescence molecular imaging is widely used to visualize and observe different biomolecules, in particular DNA and RNA, in vivo and in real time. Typically, DNA strands are tagged with only one fluorophore, and, in the case of molecular beacons, an additional quencher is conjugated, which bears the risk of false-positive or false-negative results because only fluorescence intensities at one fluorescence wavelength (color) are compared. To address this drawback, the concept of "DNA/RNA traffic lights," which is characterized by a fluorescence color change due to energy transfer between two dyes, was developed by our working group. For these DNA and RNA systems, the oligonucleotides are post-synthetically labeled, specifically after solid-phase synthesis by chemical means, with a fluorescent dye using copper(I)-catalyzed cycloaddition at the 2' position of single uridines. In order to functionalize oligonucleotides with several different labels, an on-resin method is required to ensure the necessary selectivity. This unit describes two different CuAAC ("click") approaches-in solution (post-synthetic) and on solid phase (during synthesis)-for the attachment of fluorophores to the 2' position of DNA. © 2018 by John Wiley & Sons, Inc.


Assuntos
Alcinos/química , Azidas/química , Cobre/química , Reação de Cicloadição , Corantes Fluorescentes/química , Oligonucleotídeos/química , Catálise
4.
Curr Opin Chem Biol ; 40: 119-126, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28938174

RESUMO

The chemical toolbox for synthetic modification by nucleotide building blocks and postsynthetic methods delivers light-induced functions to DNA in great variety and allows not only to initiate photoinduced processes but additionally the temporal and spatial control of these artificial functions. Herein, selected light-induced artificial functions in DNA are briefly summarized. This includes the postsynthetic 'photoclick' labeling strategy, benzophenone and acetophenone nucleosides as photosensitizers to induce [2+2] cycloadditions, molecular switches and energy transfer based fluorophore pairs, called "DNA traffic lights".


Assuntos
Acetofenonas/química , Benzofenonas/química , DNA/química , Corantes Fluorescentes/química , Fármacos Fotossensibilizantes/química , Transferência de Energia , Luz , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...