RESUMO
Burkholderia pseudomallei, the etiological agent of melioidosis, has been hypothesized to be endemic throughout the Caribbean, including the impoverished nation of Haiti. However, because of the protean clinical manifestations, presence of asymptomatic infections, and limited medical diagnostic capacity, the identification of active melioidosis cases remains challenging. A seroepidemiological study was conducted using a novel enzyme-linked immunosorbent assay (ELISA) to detect antibodies toward B. pseudomallei in the native population. The performance of an indirect ELISA with purified lipopolysaccharide (LPS) from B. pseudomallei was evaluated using serum collected from rhesus macaques exposed to aerosolized B. pseudomallei. After optimization, serum collected from asymptomatic population members (n = 756) was screened for polyvalent (immunoglobulin M [IgM]/ immunoglobulin G [IgG]/ immunoglobulin A) and monoclonal (IgG or IgM) immunoglobulins against B. pseudomallei LPS. The population seroprevalence was 11.5% (95% confidence interval [CI]: 9.2, 13.8) for polyvalent immunoglobulins, 9.8% (95% CI: 7.7, 11.9) for IgG, and 1.7% (95% CI: 0.8, 2.6%) for IgM. The seroprevalence was not significantly different by gender (P = 0.16), but increased significantly (P < 0.001) with age, yielding an estimated annual seroconversion rate of 1.05% (95% CI: 0.81, 1.3). The detection of both recent (IgM+) and previous (IgG+) exposure to B. pseudomallei provides serological evidence that melioidosis is endemic in Haiti.
Assuntos
Anticorpos Antibacterianos/sangue , Burkholderia pseudomallei/imunologia , Melioidose/epidemiologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Animais , Infecções Assintomáticas/epidemiologia , Criança , Pré-Escolar , Doenças Endêmicas , Ensaio de Imunoadsorção Enzimática , Feminino , Haiti/epidemiologia , Humanos , Lipopolissacarídeos , Macaca mulatta/imunologia , Masculino , Melioidose/imunologia , Pessoa de Meia-Idade , Estudos Soroepidemiológicos , Adulto JovemRESUMO
Choline favors the pathogenesis of Pseudomonas aeruginosa because hemolytic phospholipase C and phosphorylcholine phosphatase (PchP) are synthesized as a consequence of its catabolism. The experiments performed here resulted in the identification of the factors that regulate both the catabolism of choline and the gene coding for PchP. We have also identified and characterized the promoter of the pchP gene, its transcriptional organization and the factors that affect its expression. Deletion analyses reveal that the region between -188 and -68 contains all controlling elements necessary for pchP expression: a hypothetical -12/-24 promoter element, a consensus sequence for the integration host factor (-141/-133), and a palindromic sequence resembling a binding site for a potential enhancer binding protein (-190/-174). Our data also demonstrate that choline catabolism and NtrC (nitrogen regulatory protein) are necessary for the full expression of pchP and is partially dependent on σ(54) factor.
Assuntos
Colina/metabolismo , Regulação Bacteriana da Expressão Gênica , Monoéster Fosfórico Hidrolases/metabolismo , Pseudomonas aeruginosa/metabolismo , RNA Polimerase Sigma 54/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , Expressão Gênica , Ordem dos Genes , Genes Bacterianos , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/genética , Fosforilcolina , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/genética , RNA Polimerase Sigma 54/genética , Deleção de Sequência , Fatores de Transcrição/genéticaRESUMO
Pseudomonas aeruginosa is an opportunistic human pathogen exhibiting innate resistance to multiple antimicrobial agents. This intrinsic multidrug resistance is caused by synergy between a low-permeability outer membrane and expression of a number of broadly-specific multidrug efflux (Mex) systems, including MexAB-OprM and MexXY-OprM. In addition to this intrinsic resistance, these and three additional systems, MexCD-OprJ, MexEF-OprN and MexJK-OprM promote acquired multidrug resistance as a consequence of hyper-expression of the efflux genes by mutational events. In addition to antibiotics, these pumps export biocides, dyes, detergents, metabolic inhibitors, organic solvents and molecules involved in bacterial cell-cell communication. Homologues of the resistance-nodulation-division systems of P. aeruginosa have been found in Burkholderia cepacia, B. pseudomallei, Stenotrophomonas maltophilia, and the nonpathogen P. putida, where they play roles in resistance to antimicrobials and/or organic solvents. Despite intensive studies of these multidrug efflux systems over the past several years, their precise molecular architectures, their modes of regulation of expression and their natural functions remain largely unknown.