Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Bioorg Med Chem Lett ; 98: 129589, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38097140

RESUMO

Elevated levels of receptor tyrosine kinase-like orphan receptor 1 (RORl) expression are observed in multiple hematological and solid tumors, but not in most of the healthy adult tissues, identifying ROR1 as an attractive target for tumor-specific therapy. Herein we will describe the discovery of macrocyclic peptides as binders of the extracellular Cysteine-Rich Domain (CRD) of human ROR1 via mRNA in vitro selection technology using the PDPS platform, followed by exploration of sidechain SAR of parent macrocycle peptides, fluorescently labeled analogs, and a Peptide Drug Conjugate (PDC). The parent macrocyclic peptides represented by Compound 1 and Compound 14 displayed nanomolar cell-based binding to ROR1 and relatively good internalization in 786-O and MDA-MB-231 tumor cell lines. However, these peptides were not observed to induce apoptosis in Mia PaCa-2 cells, a model pancreatic tumor cell line with a relatively low level of cell surface expression of ROR1.


Assuntos
Peptídeos Cíclicos , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Adulto , Humanos , Linhagem Celular Tumoral , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/efeitos dos fármacos , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia
2.
Drug Discov Today ; 28(11): 103795, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37805064

RESUMO

Translational research has a crucial role in bridging the gap between basic biology discoveries and their clinical applications. Deep scientific understanding and advanced technology platforms are both crucial for translational research. Here, I describe a novel integrated Drug Intelligence Science (DIS®) translational platform that combines single cell technology with artificial intelligence (AI) and machine learning (ML) to gain insights into high-resolution cell biology, thus enabling the discovery of disease-relevant targets, high-quality drug candidates, and predictive biomarkers. The innovative DIS® approach has the potential to provide unprecedented mechanistic understanding of human diseases and enable in-depth pharmacological profiling of drug candidates to increase the probability of success (POS) in drug discovery and development.


Assuntos
Inteligência Artificial , Inteligência , Humanos , Descoberta de Drogas , Aprendizado de Máquina , Probabilidade
3.
Front Pharmacol ; 14: 1117293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332355

RESUMO

Objective: The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) still protracts worldwide. HFB30132A is an anti- SARS-CoV-2 monoclonal antibody purposely engineered for an extended half-life with neutralizing activity against majority of the virus variants identified so far. The aim of this study was to evaluate the safety, tolerability, pharmacokinetics (PK), and immunogenicity of HFB30132A in healthy Chinese subjects. Methods: A phase 1, randomized, double-blind, placebo-controlled, single ascending dose clinical trial was designed. Twenty subjects were enrolled to Cohort 1 (1,000 mg dose level, 10 subjects) or Cohort 2 (2,000 mg dose level, 10 subjects). Subjects in each cohort were assigned randomly to receive a single intravenous (IV) dose of HFB30132A or placebo at a ratio of 8:2. Safety was assessed in terms of treatment emergent adverse events (TEAEs), vital signs, physical examination, laboratory tests, and ECG findings. PK parameters were measured and calculated appropriately. Anti-drug antibody (ADA) test was performed to detect anti-HFB30132A antibodies. Results: All subjects completed the study. Overall, 13 (65%) of the 20 subjects experienced TEAEs. The most common TEAEs were laboratory abnormalities (12 subjects [60%]), gastrointestinal disorders (6 subjects [30%]), and dizziness (4 subjects [20%]). All TEAEs were Grade 1 or Grade 2 in severity based on the criteria of Common Terminology Criteria for Adverse Events (CTCAE). Serum exposure (Cmax, AUC0-t, AUC0-∞) of HFB30132A increased with ascending dose. After single dose of 1,000 mg and 2000 mg HFB30132A, the mean Cmax was 570.18 µg/mL and 898.65 µg/mL, the mean AUC0-t value was 644,749.42 h*µg/mL and 1,046,209.06 h*µg/mL, and the mean AUC0-∞ value was 806,127.47 h*µg/mL and 1,299,190.74 h*µg/mL, respectively. HFB30132A showed low clearance ranging from 1.38 to 1.59 mL/h, and a long terminal elimination half-life (t½) of 89-107 days. ADA test did not detect any anti-HFB30132A antibodies Conclusion: HFB30132A was safe and generally well-tolerated after single IV dose of 1,000 mg or 2000 mg in healthy Chinese adults. HFB30132A did not induce immunogenic response in this study. Our data support further clinical development of HFB30132A. Clinical Trial Registration: https://clinicaltrials.gov, identifier: NCT05275660.

4.
Drug Discov Today ; 28(5): 103528, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36796755

RESUMO

Biotech start-ups often begin as domestic companies relying on local resources and talent, but this approach might not be effective in achieving rapid growth and long-term success, particularly for developing new therapeutics that require significant resources and extensive commitment. Here, we argue that born-global biotechs are better equipped to tackle major industry challenges, such as innovation, resource constraints, and limited talent diversity, especially in current challenging times. We also highlight the importance of capital efficiency in maximizing the benefits of being a born-global biotech, and provide an operational framework, based on the FlyWheel concept, for becoming a successful born-global biotech.


Assuntos
Biotecnologia , Indústrias
5.
Sci Adv ; 7(24)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34117053

RESUMO

Currently, high-throughput approaches are lacking in the isolation of antibodies with functional readouts beyond simple binding. This situation has impeded the next generation of cancer immunotherapeutics, such as bispecific T cell engager (BiTE) antibodies or agonist antibodies against costimulatory receptors, from reaching their full potential. Here, we developed a highly efficient droplet-based microfluidic platform combining a lentivirus transduction system that enables functional screening of millions of antibodies to identify potential hits with desired functionalities. To showcase the capacity of this system, functional antibodies for CD40 agonism with low frequency (<0.02%) were identified with two rounds of screening. Furthermore, the versatility of the system was demonstrated by combining an anti-Her2 × anti-CD3 BiTE antibody library with functional screening, which enabled efficient identification of active anti-Her2 × anti-CD3 BiTE antibodies. The platform could revolutionize next-generation cancer immunotherapy drug development and advance medical research.

6.
Nat Commun ; 12(1): 2623, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976198

RESUMO

COVID-19 pandemic caused by SARS-CoV-2 constitutes a global public health crisis with enormous economic consequences. Monoclonal antibodies against SARS-CoV-2 can provide an important treatment option to fight COVID-19, especially for the most vulnerable populations. In this work, potent antibodies binding to SARS-CoV-2 Spike protein were identified from COVID-19 convalescent patients. Among them, P4A1 interacts directly with and covers majority of the Receptor Binding Motif of the Spike Receptor-Binding Domain, shown by high-resolution complex structure analysis. We further demonstrate the binding and neutralizing activities of P4A1 against wild type and mutant Spike proteins or pseudoviruses. P4A1 was subsequently engineered to reduce the potential risk for Antibody-Dependent Enhancement of infection and to extend its half-life. The engineered antibody exhibits an optimized pharmacokinetic and safety profile, and it results in complete viral clearance in a rhesus monkey model of COVID-19 following a single injection. These data suggest its potential against SARS-CoV-2 related diseases.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Especificidade de Anticorpos/imunologia , COVID-19/epidemiologia , Linhagem Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Feminino , Humanos , Macaca mulatta , Masculino , Mutação , Pandemias , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Resultado do Tratamento , Células Vero , Tratamento Farmacológico da COVID-19
7.
Drug Discov Today ; 23(2): 213-218, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28941377

RESUMO

Open innovation has become the main trend in pharmaceutical research. Potential obstacles and pitfalls of collaborations often lead to missed opportunities and/or poorly executed partnerships. This paper aims to provide a framework that facilitates the execution of successful collaborations. We start by mapping out three checkpoints onto early-stage collaborative partnerships: inception, ignition and implementation. Different value types and value drivers are then laid out for each phase of the partnership. We proceed to propose a ratio-driven approach and a value-adjustment mechanism, enhancing the probability of successes in pharmaceutical research collaborations. These guiding principles combined should help the partners either reach agreement more quickly or move on to the next potential project.


Assuntos
Pesquisa Farmacêutica/normas , Comportamento Cooperativo , Difusão de Inovações , Humanos , Probabilidade
8.
Oncotarget ; 8(70): 114526-114539, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29383099

RESUMO

Hepatocellular carcinoma (HCC) represents a serious public health challenge with few therapeutic options available to cancer patients.Wnt/ß-catenin pathway is thought to play a significant role in HCC pathogenesis. In this study, we confirmed high frequency of CTNNB1 (ß-catenin) mutations in two independent cohorts of HCC patients and demonstrated significant upregulation of ß-catenin protein in the overwhelming majority of HCC patient samples, patient-derived xenografts (PDX) and established cell lines. Using genetic tools validated for target specificity through phenotypic rescue experiments, we went on to investigate oncogenic dependency on ß-catenin in an extensive collection of human HCC cells lines. Our results demonstrate that dependency on ß-catenin generally tracks with its activation status. HCC cell lines that harbored activating mutations in CTNNB1 or displayed elevated levels of non-phosphorylated (active) ß-catenin were significantly more sensitive to ß-catenin siRNA treatment than cell lines with wild-type CTNNB1 and lower active ß-catenin. Finally, significant therapeutic benefit of ß-catenin knock-down was demonstrated in established HCC tumor xenografts using doxycycline-inducible shRNA system. ß-catenin downregulation and tumor growth inhibition was associated with reduction in AXIN2, direct transcriptional target of ß-catenin, and decreased cancer cell proliferation as measured by Ki67 staining. Taken together, our data highlight fundamental importance of aberrant ß-catenin signaling in the maintenance of oncogenic phenotype in HCC.

9.
PLoS One ; 11(6): e0155909, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27280728

RESUMO

A phenotypic high-throughput cell culture screen was performed to identify compounds that prevented proliferation of the human Papilloma virus type 16 (HPV-16) transformed cell line Ca Ski. A series of quinoxaline compounds exemplified by Compound 1 was identified. Testing against a panel of cell lines demonstrated that Compound 1 selectively inhibited replication of all HPV-16, HPV-18, and HPV-31 transformed cell lines tested with 50% Inhibitory Concentration (IC50) values of 2 to 8 µM relative to IC50 values of 28 to 73 µM in HPV-negative cell lines. Treatment with Compound 1 resulted in a cascade of multiple apoptotic events, including selective activation of effector caspases 3 and 7, fragmentation of cellular DNA, and PARP (poly(ADP-ribose) polymerase) cleavage in HPV-positive cells relative to HPV-negative cells. Unregulated proliferation of HPV transformed cells is dependent on the viral oncogenes, E6 and E7. Treatment with Compound 1 resulted in a decrease in HPV E7 protein in Ca Ski cells. However, the timing of this reduction relative to other effects of compound treatment suggests that this was a consequence, rather than a cause, of the apoptotic cascade. Likewise, compound treatment resulted in no obvious effects on the E6- and E7- mediated down regulation of p53 and Rb, or their downstream effectors, p21 or PCNA. Further investigation of apoptotic signals induced by Compound 1 revealed cleavage of Caspase-8 in HPV-positive cells as early as 2 hours post-treatment, suggesting the compound initiates apoptosis through the extrinsic, death receptor-mediated, pathway of cell death. These studies provide proof of concept that cells transformed by oncogenic Papillomaviruses can be selectively induced to undergo apoptosis by compound treatment.


Assuntos
Apoptose/efeitos dos fármacos , Transformação Celular Viral/efeitos dos fármacos , Papillomaviridae/efeitos dos fármacos , Infecções por Papillomavirus/patologia , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias do Colo do Útero/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Feminino , Humanos , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/virologia , Proteína do Retinoblastoma/metabolismo , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/virologia
10.
J Biomol Screen ; 21(8): 866-74, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27142718

RESUMO

Oral agents targeting Janus-associated kinases (JAKs) are promising new agents in clinical development. To better understand the relationship between JAK inhibition and biological outcome, compounds targeting JAKs were evaluated in peripheral human whole blood. To date, these analyses are low throughput and costly. Here, we developed a robust 384-well, high-throughput flow-based assay approach to screen small molecules for JAK/STAT signaling inhibition in human whole blood. This assay platform provides a highly sensitive analysis of signaling events in blood and facilitates measurement of target engagement. Further, the automation technologies and process optimizations developed here overcame sample integrity, handling, and multiparametric data analysis bottlenecks without affecting assay performance. Together these efforts dramatically increased sample throughput compared to conventional manual flow cytometric approaches and enabled development of novel JAK/STAT inhibitors.


Assuntos
Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Inibidores de Proteínas Quinases/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos , Humanos , Janus Quinases/antagonistas & inibidores , Janus Quinases/genética , Fosforilação , Inibidores de Proteínas Quinases/química , Fatores de Transcrição STAT/antagonistas & inibidores , Fatores de Transcrição STAT/genética , Bibliotecas de Moléculas Pequenas/química
11.
Mol Cancer Ther ; 14(10): 2167-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26253517

RESUMO

The BET (bromodomain and extra-terminal) proteins bind acetylated histones and recruit protein complexes to promote transcription elongation. In hematologic cancers, BET proteins have been shown to regulate expression of MYC and other genes that are important to disease pathology. Pharmacologic inhibition of BET protein binding has been shown to inhibit tumor growth in MYC-dependent cancers, such as multiple myeloma. In this study, we demonstrate that small cell lung cancer (SCLC) cells are exquisitely sensitive to growth inhibition by the BET inhibitor JQ1. JQ1 treatment has no impact on MYC protein expression, but results in downregulation of the lineage-specific transcription factor ASCL1. SCLC cells that are sensitive to JQ1 are also sensitive to ASCL1 depletion by RNAi. Chromatin immunoprecipitation studies confirmed the binding of the BET protein BRD4 to the ASCL1 enhancer, and the ability of JQ1 to disrupt the interaction. The importance of ASCL1 as a potential driver oncogene in SCLC is further underscored by the observation that ASCL1 is overexpressed in >50% of SCLC specimens, an extent greater than that observed for other putative oncogenes (MYC, MYCN, and SOX2) previously implicated in SCLC. Our studies have provided a mechanistic basis for the sensitivity of SCLC to BET inhibition and a rationale for the clinical development of BET inhibitors in this disease with high unmet medical need.


Assuntos
Antineoplásicos/farmacologia , Azepinas/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/metabolismo , Carcinoma de Pequenas Células do Pulmão/metabolismo , Fatores de Transcrição/metabolismo , Triazóis/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios de Seleção de Medicamentos Antitumorais , Elementos Facilitadores Genéticos , Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Ligação Proteica , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Transcriptoma/efeitos dos fármacos
12.
ACS Med Chem Lett ; 6(8): 908-12, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26288692

RESUMO

BMS-641988 (23) is a novel, nonsteroidal androgen receptor antagonist designed for the treatment of prostate cancer. The compound has high binding affinity for the AR and acts as a functional antagonist in vitro. BMS-641988 is efficacious in multiple human prostate cancer xenograft models, including CWR22-BMSLD1 where it displays superior efficacy relative to bicalutamide. Based on its promising preclinical profile, BMS-641988 was selected for clinical development.

13.
Curr Chem Genom Transl Med ; 8(Suppl 1): 16-26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24596681

RESUMO

Microtubules are important components of the cellular cytoskeleton that play roles in various cellular processes such as vesicular transport and spindle formation during mitosis. They are formed by an ordered organization of α-tubulin and ß-tubulin hetero-polymers. Altering microtubule polymerization has been known to be the mechanism of action for a number of therapeutically important drugs including taxanes and epothilones. Traditional cell-based assays for tubulin-interacting compounds rely on their indirect effects on cell cycle and/or cell proliferation. Direct monitoring of compound effects on microtubules is required to dissect detailed mechanisms of action in a cellular setting. Here we report a high-content assay platform to monitor tubulin polymerization status by directly measuring the acute effects of drug candidates on the cellular tubulin network with the capability to dissect the mechanisms of action. This high-content analysis distinguishes in a quantitative manner between compounds that act as tubulin stabilizers versus those that are tubulin destabilizers. In addition, using a multiplex approach, we expanded this analysis to simultaneously monitor physiological cellular responses and associated cellular phenotypes.

14.
Ann N Y Acad Sci ; 1309: 30-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24571255

RESUMO

Human gene expression patterns are controlled and coordinated by the activity of a diverse array of epigenetic regulators, including histone methyltransferases, acetyltransferases, and chromatin remodelers. Deregulation of these epigenetic pathways can lead to genome-wide changes in gene expression, with serious disease consequences. In recent years, research has suggested that cross talk between genomic (i.e., for example, mutations, translocations) and epigenomic factors may drive the etiology of both hematologic malignancies and solid tumors. Current work in translational research seeks to identify epigenetic regulators whose aberrant activity contributes to oncogenesis, including the histone methyltransferases DOT1L and EZH2 and the bromodomain-containing BET family, and to develop drugs that inhibit the aberrant activity of these regulators. Preclinical and clinical studies using small-molecule inhibitors of epigenetic regulators have underscored their value for therapeutic intervention, and these inhibitors can also be used to drive further studies into dissecting the functions of epigenetic factors in normal and cancer cells.


Assuntos
Epigênese Genética/genética , Terapia de Alvo Molecular/métodos , Neoplasias/terapia , Animais , Antineoplásicos/uso terapêutico , Transformação Celular Neoplásica/genética , Metilação de DNA , Proteínas de Ligação a DNA/antagonistas & inibidores , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Humanos , Terapia de Alvo Molecular/tendências , Neoplasias/genética
15.
J Biomol Screen ; 18(9): 1043-53, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23733846

RESUMO

Tumor cell proliferation assays are widely used for oncology drug discovery, including target validation, lead compound identification, and optimization, as well as determination of compound off-target activities. Taking advantage of robotic systems to maintain cell culture and perform cell proliferation assays would greatly increase productivity and efficiency. Here we describe the establishment of automated systems for high-throughput cell proliferation assays in a panel of 13 human tumor cell lines. These cell lines were selected from various types of human tumors containing a broad range of well-characterized mutations in multiple cellular signaling pathways. Standard procedures for cell culture and assay performance were developed and optimized in each cell line. Moreover, in-house developed software (i.e., Toolset, Curvemaster, and Biobars) was applied to analyze the data and generate data reports. Using tool compounds, we have shown that results obtained through this panel exhibit high reproducibility over a long period. Furthermore, we have demonstrated that this panel can be used to identify sensitive and insensitive cell lines for specific cancer targets, to drive cellular structure-activity relationships, and to profile compound off-target activities. All those efforts are important for cancer drug discovery lead optimization.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Ensaios de Triagem em Larga Escala/normas , Software , Antineoplásicos/química , Automação Laboratorial , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Especificidade de Órgãos , Reprodutibilidade dos Testes , Relação Estrutura-Atividade
16.
Artigo em Inglês | MEDLINE | ID: mdl-24665207

RESUMO

The link between signaling pathways and diseases suggests the importance of pathway analysis for drug discovery. This includes target identification and validation, compound mode of action and drug candidate optimization. Here, we propose to apply cell signaling pathway panel approaches for oncology drug discovery. The strategies and guiding principles of the pathway panel approach are discussed. 2 pathway analysis examples with related processes and technology platforms are illustrated to identify cancer drugs that target cancer growth and metastasis. Finally, we highlight potential challenges and opportunities presented by the pathway panel approach.

17.
Bioorg Med Chem Lett ; 21(24): 7516-21, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22041058

RESUMO

The design, synthesis and SAR of a novel class of valerolactam-based arylsulfonamides as potent and selective FXa inhibitors is reported. The arylsulfonamide-valerolactam scaffold was derived based on the proposed bioisosterism to the arylcyanoguanidine-caprolactam core in known FXa inhibitors. The SAR study led to compound 46 as the most potent FXa inhibitor in this series, with an IC(50) of 7 nM and EC(2×PT) of 1.7 µM. The X-ray structure of compound 40 bound to FXa shows that the sulfonamide-valerolactam scaffold anchors the aryl group in the S1 and the novel acylcytisine pharmacophore in the S4 pockets.


Assuntos
Anticoagulantes/química , Inibidores do Fator Xa , Piperidonas/química , Inibidores de Serina Proteinase/química , Anticoagulantes/síntese química , Anticoagulantes/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Fator Xa/metabolismo , Humanos , Lactamas/química , Conformação Molecular , Piperidonas/síntese química , Piperidonas/farmacologia , Estrutura Terciária de Proteína , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/farmacologia , Relação Estrutura-Atividade
18.
Bioinformatics ; 27(20): 2921-3, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21865301

RESUMO

SUMMARY: Dose-response information is critical to understanding drug effects, yet analytical methods for dose-response assays cannot cope with the dimensionality of large-scale screening data such as the microarray profiling data. To overcome this limitation, we developed and implemented the Sigmoidal Dose Response Search (SDRS) algorithm, a grid search-based method designed to handle large-scale dose-response data. This method not only calculates the pharmacological parameters for every assay, but also provides built-in statistic that enables downstream systematic analyses, such as characterizing dose response at the transcriptome level. AVAILABILITY: Bio::SDRS is freely available from CPAN (www.cpan.org). CONTACTS: ruiruji@gmail.com; bruc@acm.org SUPPLEMENTARY INFORMATION: Supplementary data is available at Bioinformatics online.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Transcriptoma/efeitos dos fármacos , Relação Dose-Resposta a Droga
20.
Cancer Res ; 69(16): 6522-30, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19654297

RESUMO

Despite an excellent initial response to first-line hormonal treatment, most patients with metastatic prostate cancer will succumb to a hormone-refractory form of the disease. Because these tumors are still dependent on a functional androgen receptor (AR), there is a need to find novel and more potent antiandrogens. While searching for small molecules that bind to the AR and inhibit its transcriptional activity, BMS-641988 was discovered. This novel antiandrogen showed an increased (>1 log) potency compared with the standard antiandrogen, bicalutamide, in both binding affinity to the AR and inhibition of AR-mediated transactivation in cell-based reporter assays. In mature rats, BMS-641988 strongly inhibited androgen-dependent growth of the ventral prostate and seminal vesicles. In the CWR-22-BMSLD1 human prostate cancer xenograft model, BMS-641988 showed increased efficacy over bicalutamide (average percent tumor growth inhibition >90% versus <50%), even at exposure levels of bicalutamide 3-fold greater than what can be attained in humans. Furthermore, BMS-641988 was efficacious in CWR-22-BMSLD1 tumors initially refractory to treatment with bicalutamide. BMS-641988 was highly efficacious in the LuCaP 23.1 human prostate xenograft model, inducing stasis throughout the approximately 30-day dosing. To explore the functional mechanisms of BMS-641988, gene expression profiling analysis was done on CWR-22-BMSLD1 xenograft models in mice. Treatment with BMS-641988 resulted in a global gene expression profile more similar to castration compared with that of bicalutamide. Overall, these data highlight that the unique preclinical profile of BMS-641988 may provide additional understanding for the hormonal treatment of prostate cancer.


Assuntos
Antagonistas de Receptores de Andrógenos , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Imidas/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Animais , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Imidas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...