Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 17212, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748632

RESUMO

Test strips are convenient tools for rapid, semi-quantitative analysis of a variety of parameters by dipping them for a few seconds in a sample solution followed by a simple colorimetric read-out. Their sensitivity is mainly determined by the reactivity of the test dyes on the reaction zone and is not sufficient for some applications. The detection limit of commercially available free chlorine test strips, for example, is at present not low enough to confirm the absence of this analyte as disinfectant in rinsing solutions after disinfection or to control required residual amounts of chlorine in drinking water. Therefore, we developed a user-friendly lateral flow test which is capable to detect very low amounts of free chlorine. The latter relies on a larger sample volume passing the reaction zone as compared to simple dip test strips. An amount of as low as 0.05 ppm chlorine can, however, only be detected if oxidation stable flow test substrates are used. The eventually developed flow test reaches a 10x higher sensitivity than a commercial dip test. The result is obtained within 4-5 min flow time, whereby no action is required by the user during this analysis time.

2.
Phys Chem Chem Phys ; 15(28): 11830-9, 2013 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-23760527

RESUMO

Glyme-based electrolytes were studied for the use in lithium-air batteries because of their greater stability towards oxygen reduction reaction intermediates (e.g., superoxide anion radicals (O2˙(-))) produced upon discharge at the cathode compared to previously employed carbonate-based electrolytes. However, contradictory results of glyme stability tests employing KO2 as an O2˙(-) source were reported in the literature. For clarification, we investigated the reaction of KO2 with glymes of various chain lengths qualitatively using (1)H NMR and FTIR spectroscopy as well as more quantitatively using UV-Vis spectroscopy. During our experiments we found a huge impact of small quantities of impurities on the stability of the solvents. Therefore, we studied further the influence of impurities in the glymes on the cycling behavior of Li-O2 cells, demonstrating the large effect of electrolyte impurities on Li-O2 cell performance.

3.
Phys Chem Chem Phys ; 15(27): 11478-93, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23748698

RESUMO

The instability of currently used electrolyte solutions and of the carbon support during charge-discharge in non-aqueous lithium-oxygen cells can lead to discharge products other than the desired Li2O2, such as Li2CO3, which is believed to reduce cycle-life. Similarly, discharge in an O2 atmosphere which contains H2O and CO2 impurities would lead to LiOH and Li2CO3 discharge products. In this work we therefore investigate the rechargeability of model cathodes pre-filled with four possible Li-air cell discharge products, namely Li2O2, Li2CO3, LiOH, and Li2O. Using Online Electrochemical Mass Spectrometry (OEMS), we determined the charge voltages and the gases evolved upon charge of pre-filled electrodes, thus determining the reversibility of the formation/electrooxidation reactions. We show that Li2O2 is the only reversible discharge product in ether-based electrolyte solutions, and that the formation of Li2CO3, LiOH, or Li2O is either irreversible and/or reacts with the electrolyte solution or the carbon during its oxidation.


Assuntos
Fontes de Energia Elétrica , Éteres/química , Lítio/química , Oxigênio/química , Técnicas Eletroquímicas , Eletrodos , Eletrólitos/química , Espectrometria de Massas , Oxirredução , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...