Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105718, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311173

RESUMO

Starvation of Schizosaccharomyces pombe for inorganic phosphate elicits adaptive transcriptome changes in which mRNAs driving ribosome biogenesis, tRNA biogenesis, and translation are globally downregulated, while those for autophagy and phosphate mobilization are upregulated. Here, we interrogated three components of the starvation response: upregulated autophagy; the role of transcription factor Pho7 (an activator of the PHO regulon); and upregulated expression of ecl3, one of three paralogous genes (ecl1, ecl2, and ecl3) collectively implicated in cell survival during other nutrient stresses. Ablation of autophagy factor Atg1 resulted in early demise of phosphate-starved fission yeast, as did ablation of Pho7. Transcriptome profiling of phosphate-starved pho7Δ cells highlighted Pho7 as an activator of genes involved in phosphate acquisition and mobilization, not limited to the original three-gene PHO regulon, and additional starvation-induced genes (including ecl3) not connected to phosphate dynamics. Pho7-dependent gene induction during phosphate starvation tracked with the presence of Pho7 DNA-binding elements in the gene promoter regions. Fewer ribosome protein genes were downregulated in phosphate-starved pho7Δ cells versus WT, which might contribute to their shortened lifespan. An ecl3Δ mutant elicited no gene expression changes in phosphate-replete cells and had no impact on survival during phosphate starvation. By contrast, pan-ecl deletion (ecl123Δ) curtailed lifespan during chronic phosphate starvation. Phosphate-starved ecl123Δ cells experienced a more widespread downregulation of mRNAs encoding aminoacyl tRNA synthetases vis-à-vis WT or pho7Δ cells. Collectively, these results enhance our understanding of fission yeast phosphate homeostasis and survival during nutrient deprivation.


Assuntos
Proteínas de Ligação a DNA , Longevidade , Fosfatos , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Fatores de Transcrição , Regulação Fúngica da Expressão Gênica , Longevidade/genética , Fosfatos/deficiência , RNA de Transferência/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcriptoma , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
RNA ; 30(4): 367-380, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238085

RESUMO

Fungal Trl1 is an essential trifunctional tRNA splicing enzyme that heals and seals tRNA exons with 2',3'-cyclic-PO4 and 5'-OH ends. Trl1 is composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase end-healing domains that generate the 3'-OH,2'-PO4 and 5'-PO4 termini required for sealing by an N-terminal ATP-dependent ligase domain. Trl1 enzymes are present in many human fungal pathogens and are promising targets for antifungal drug discovery because their domain structures and biochemical mechanisms are unique compared to the mammalian RtcB-type tRNA splicing enzyme. Here we report that Mucorales species (deemed high-priority human pathogens by WHO) elaborate a noncanonical tRNA splicing apparatus in which a monofunctional RNA ligase enzyme is encoded separately from any end-healing enzymes. We show that Mucor circinelloides RNA ligase (MciRNL) is active in tRNA splicing in vivo in budding yeast in lieu of the Trl1 ligase domain. Biochemical and kinetic characterization of recombinant MciRNL underscores its requirement for a 2'-PO4 terminus in the end-joining reaction, whereby the 2'-PO4 enhances the rates of RNA 5'-adenylylation (step 2) and phosphodiester synthesis (step 3) by ∼125-fold and ∼6200-fold, respectively. In the canonical fungal tRNA splicing pathway, the splice junction 2'-PO4 installed by RNA ligase is removed by a dedicated NAD+-dependent RNA 2'-phosphotransferase Tpt1. Here we identify and affirm by genetic complementation in yeast the biological activity of Tpt1 orthologs from three Mucorales species. Recombinant M. circinelloides Tpt1 has vigorous NAD+-dependent RNA 2'-phosphotransferase activity in vitro.


Assuntos
Mucorales , Animais , Humanos , Mucorales/genética , Mucorales/metabolismo , NAD/metabolismo , RNA/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA Ligase (ATP)/genética , RNA Ligase (ATP)/metabolismo , Saccharomyces cerevisiae/metabolismo , Ligases , Polinucleotídeo 5'-Hidroxiquinase/química , Splicing de RNA , Mamíferos/genética
3.
mBio ; 15(2): e0306223, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38133430

RESUMO

The inositol pyrophosphate signaling molecule 1,5-IP8 is an agonist of RNA 3'-processing and transcription termination in fission yeast that regulates the expression of phosphate acquisition genes pho1, pho84, and tgp1. IP8 is synthesized from 5-IP7 by the Asp1 N-terminal kinase domain and catabolized by the Asp1 C-terminal pyrophosphatase domain. asp1-STF mutations that delete or inactivate the Asp1 pyrophosphatase domain elicit growth defects in yeast extract with supplements (YES) medium ranging from severe sickness to lethality. We now find that the toxicity of asp1-STF mutants is caused by a titratable constituent of yeast extract. Via a genetic screen for spontaneous suppressors, we identified a null mutation of glycerophosphodiester transporter tgp1 that abolishes asp1-STF toxicity in YES medium. This result, and the fact that tgp1 mRNA expression is increased by >40-fold in asp1-STF cells, prompted discovery that: (i) glycerophosphocholine (GPC) recapitulates the toxicity of yeast extract to asp1-STF cells in a Tgp1-dependent manner, and (ii) induced overexpression of tgp1 in asp1+ cells also elicits toxicity dependent on GPC. asp1-STF suppressor screens yielded a suite of single missense mutations in the essential IP6 kinase Kcs1 that generates 5-IP7, the immediate precursor to IP8. Transcription profiling of the kcs1 mutants in an asp1+ background revealed the downregulation of the same phosphate acquisition genes that were upregulated in asp1-STF cells. The suppressor screen also returned single missense mutations in Plc1, the fission yeast phospholipase C enzyme that generates IP3, an upstream precursor for the synthesis of inositol pyrophosphates.IMPORTANCEThe inositol pyrophosphate metabolite 1,5-IP8 governs repression of fission yeast phosphate homeostasis genes pho1, pho84, and tgp1 by lncRNA-mediated transcriptional interference. Asp1 pyrophosphatase mutations that increase IP8 levels elicit precocious lncRNA termination, leading to derepression of the PHO genes. Deletions of the Asp1 pyrophosphatase domain result in growth impairment or lethality via IP8 agonism of transcription termination. It was assumed that IP8 toxicity ensues from dysregulation of essential genes. In this study, a suppressor screen revealed that IP8 toxicosis of Asp1 pyrophosphatase mutants is caused by: (i) a >40-fold increase in the expression of the inessential tgp1 gene encoding a glycerophosphodiester transporter and (ii) the presence of glycerophosphocholine in the growth medium. The suppressor screen yielded missense mutations in two upstream enzymes of inositol polyphosphate metabolism: the phospholipase C enzyme Plc1 that generates IP3 and the essential Kcs1 kinase that converts IP6 to 5-IP7, the immediate precursor of IP8.


Assuntos
Fragmentos de Peptídeos , Fosfotransferases (Aceptor do Grupo Fosfato) , RNA Longo não Codificante , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Tireoglobulina , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Inositol/metabolismo , Difosfatos/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , RNA Longo não Codificante/genética , Proteínas de Membrana Transportadoras/metabolismo , Pirofosfatases/genética , Pirofosfatases/metabolismo , Fosfatos de Inositol/metabolismo
4.
mBio ; 14(5): e0205623, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772819

RESUMO

IMPORTANCE: The inositol pyrophosphate signaling molecule 1,5-IP8 modulates fission yeast phosphate homeostasis via its action as an agonist of RNA 3'-processing and transcription termination. Cellular 1,5-IP8 levels are determined by a balance between the activities of the inositol polyphosphate kinase Asp1 and several inositol pyrophosphatase enzymes. Here, we characterize Schizosaccharomyces pombe Siw14 (SpSiw14) as a cysteinyl-phosphatase-family pyrophosphatase enzyme capable of hydrolyzing the phosphoanhydride substrates inorganic pyrophosphate, inorganic polyphosphate, and inositol pyrophosphates 5-IP7, 1-IP7, and 1,5-IP8. Genetic analyses implicate SpSiw14 in 1,5-IP8 catabolism in vivo, insofar as: loss of SpSiw14 activity is lethal in the absence of the Nudix-type inositol pyrophosphatase enzyme Aps1; and siw14∆ aps1∆ lethality depends on synthesis of 1,5-IP8 by the Asp1 kinase. Suppression of siw14∆ aps1∆ lethality by loss-of-function mutations of 3'-processing/termination factors points to precocious transcription termination as the cause of 1,5-IP8 toxicosis.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Pirofosfatases/genética , Pirofosfatases/metabolismo , Especificidade por Substrato , Fosfatos de Inositol/metabolismo
5.
RNA ; 29(11): 1738-1753, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37586723

RESUMO

Expression of fission yeast Pho1 acid phosphatase is repressed under phosphate-replete conditions by transcription of an upstream prt lncRNA that interferes with the pho1 mRNA promoter. lncRNA-mediated interference is alleviated by genetic perturbations that elicit precocious lncRNA 3'-processing and transcription termination, such as (i) the inositol pyrophosphate pyrophosphatase-defective asp1-H397A allele, which results in elevated levels of IP8, and (ii) absence of the 14-3-3 protein Rad24. Combining rad24Δ with asp1-H397A causes a severe synthetic growth defect. A forward genetic screen for SRA (Suppressor of Rad24 Asp1-H397A) mutations identified a novel missense mutation (Tyr86Asp) of Pla1, the essential poly(A) polymerase subunit of the fission yeast cleavage and polyadenylation factor (CPF) complex. The pla1-Y86D allele was viable but slow-growing in an otherwise wild-type background. Tyr86 is a conserved active site constituent that contacts the RNA primer 3' nt and the incoming ATP. The Y86D mutation elicits a severe catalytic defect in RNA-primed poly(A) synthesis in vitro and in binding to an RNA primer. Yet, analyses of specific mRNAs indicate that poly(A) tails in pla1-Y86D cells are not different in size than those in wild-type cells, suggesting that other RNA interactors within CPF compensate for the defects of isolated Pla1-Y86D. Transcriptome profiling of pla1-Y86D cells revealed the accumulation of multiple RNAs that are normally rapidly degraded by the nuclear exosome under the direction of the MTREC complex, with which Pla1 associates. We suggest that Pla1-Y86D is deficient in the hyperadenylation of MTREC targets that precedes their decay by the exosome.


Assuntos
RNA Longo não Codificante , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Domínio Catalítico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Longo não Codificante/genética , Mutação , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
6.
RNA ; 29(6): 808-825, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36882296

RESUMO

Fission yeast phosphate homeostasis gene pho1 is actively repressed during growth in phosphate-rich medium by transcription in cis of a long noncoding (lnc) RNA from the 5' flanking prt(nc-pho1) gene. Pho1 expression is: (i) derepressed by genetic maneuvers that favor precocious lncRNA 3'-processing and termination, in response to DSR and PAS signals in prt; and (ii) hyperrepressed in genetic backgrounds that dampen 3'-processing/termination efficiency. Governors of 3'-processing/termination include the RNA polymerase CTD code, the CPF (cleavage and polyadenylation factor) complex, termination factors Seb1 and Rhn1, and the inositol pyrophosphate signaling molecule 1,5-IP8 Here, we present genetic and biochemical evidence that fission yeast Duf89, a metal-dependent phosphatase/pyrophosphatase, is an antagonist of precocious 3'-processing/termination. We show that derepression of pho1 in duf89Δ cells correlates with squelching the production of full-length prt lncRNA and is erased or attenuated by: (i) DSR/PAS mutations in prt; (ii) loss-of-function mutations in components of the 3'-processing and termination machinery; (iii) elimination of the CTD Thr4-PO4 mark; (iv) interdicting CTD prolyl isomerization by Pin1; (v) inactivating the Asp1 kinase that synthesizes IP8; and (vi) loss of the putative IP8 sensor Spx1. The findings that duf89Δ is synthetically lethal with pho1-derepressive mutations CTD-S7A and aps1Δ-and that this lethality is rescued by CTD-T4A, CPF/Rhn1/Pin1 mutations, and spx1Δ-implicate Duf89 more broadly as a collaborator in cotranscriptional regulation of essential fission yeast genes. The duf89-D252A mutation, which abolishes Duf89 phosphohydrolase activity, phenocopied duf89 +, signifying that duf89Δ phenotypes are a consequence of Duf89 protein absence, not absence of Duf89 catalysis.


Assuntos
RNA Longo não Codificante , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcrição Gênica , Homeostase/genética , Fosfatos/metabolismo , RNA Polimerase II/genética , Terminação da Transcrição Genética
7.
Nucleic Acids Res ; 51(7): 3094-3115, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36794724

RESUMO

Inorganic phosphate is an essential nutrient acquired by cells from their environment. Here, we characterize the adaptative responses of fission yeast to chronic phosphate starvation, during which cells enter a state of quiescence, initially fully reversible upon replenishing phosphate after 2 days but resulting in gradual loss of viability during 4 weeks of starvation. Time-resolved analyses of changes in mRNA levels revealed a coherent transcriptional program in which phosphate dynamics and autophagy were upregulated, while the machineries for rRNA synthesis and ribosome assembly, and for tRNA synthesis and maturation, were downregulated in tandem with global repression of genes encoding ribosomal proteins and translation factors. Consistent with the transcriptome changes, proteome analysis highlighted global depletion of 102 ribosomal proteins. Concomitant with this ribosomal protein deficit, 28S and 18S rRNAs became vulnerable to site-specific cleavages that generated temporally stable rRNA fragments. The finding that Maf1, a repressor of RNA polymerase III transcription, was upregulated during phosphate starvation prompted a hypothesis that its activity might prolong lifespan of the quiescent cells by limiting production of tRNAs. Indeed, we found that deletion of maf1 results in precocious death of phosphate-starved cells via a distinctive starvation-induced pathway associated with tRNA overproduction and dysfunctional tRNA biogenesis.


Assuntos
Fosfatos , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Fosfatos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Ribossômicas/genética , RNA de Transferência/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcrição Gênica
8.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-36820394

RESUMO

Inorganic polyphosphate is a ubiquitous polymer with myriad roles in cell and organismal physiology. Whereas there is evidence for nuclear polyphosphate, its impact on transcriptional regulation in eukaryotes is unkown. Transcriptional profiling of fission yeast cells lacking polyphosphate (via deletion of the catalytic subunit Vtc4 of the Vtc4/Vtc2 polyphosphate polymerase complex) elicited de-repression of four protein-coding genes located within the right sub-telomeric arm of chromosome I that is known to be transcriptionally silenced by the TORC2 complex. These genes were equally de-repressed in vtc2 ∆ cells and in cells expressing polymerase-dead Vtc4, signifying that polyphosphate synthesis is required for repression of these sub-telomeric genes.

9.
mBio ; 13(6): e0308722, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36468882

RESUMO

Expression of the fission yeast Schizosaccharomyces pombe phosphate regulon is sensitive to the intracellular level of the inositol pyrophosphate signaling molecule 1,5-IP8. IP8 dynamics are determined by Asp1, a bifunctional enzyme consisting of an N-terminal kinase domain and a C-terminal pyrophosphatase domain that catalyze IP8 synthesis and catabolism, respectively. Here, we report structures of the Asp1 kinase domain, crystallized with two protomers in the asymmetric unit, one of which was complexed with ligands (ADPNP, ADP, or ATP; Mg2+ or Mn2+; IP6, 5-IP7, or 1,5-IP8) and the other which was ligand-free. The ligand-free enzyme adopts an "open" conformation that allows ingress of substrates and egress of products. ADPNP, ADP, and ATP and associated metal ions occupy a deep phospho-donor pocket in the active site. IP6 or 5-IP7 engagement above the nucleotide favors adoption of a "closed" conformation, in which surface protein segments undergo movement and a disordered-to-ordered transition to form an inositol polyphosphate-binding site. In a structure mimetic of the kinase Michaelis complex, the anionic 5-IP7 phosphates are encaged by an ensemble of nine cationic amino acids: Lys43, Arg223, Lys224, Lys260, Arg274, Arg285, Lys290, Arg293, and Lys341. Alanine mutagenesis of amino acids that contact the adenosine nucleoside of the ATP donor underscored the contributions of Asp258 interaction with the ribose 3'-OH and of Glu248 with adenine-N6. Changing Glu248 to Gln elicited a gain of function whereby the kinase became adept at using GTP as phosphate donor. Wild-type Asp1 kinase can utilize N6-benzyl-ATP as phosphate donor. IMPORTANCE The inositol pyrophosphate signaling molecule 1,5-IP8 modulates fission yeast phosphate homeostasis via its action as an agonist of RNA 3'-processing and transcription termination. Cellular IP8 levels are determined by Asp1, a bifunctional enzyme composed of an N-terminal kinase and a C-terminal pyrophosphatase domain. Here, we present a series of crystal structures of the Asp1 kinase domain, in a ligand-free state and in complexes with nucleotides ADPNP, ADP, and ATP, divalent cations magnesium and manganese, and inositol polyphosphates IP6, 5-IP7, and 1,5-IP8. Substrate binding elicits a switch from open to closed conformations, entailing a disordered-to-ordered transition and a rearrangement or movement of two peptide segments that form a binding site for the phospho-acceptor. Our structures, along with structure-guided mutagenesis, fortify understanding of the mechanism and substrate specificity of Asp1 kinase, and they extend and complement structural and functional studies of the orthologous human kinase PPIP5K2.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Difosfatos/metabolismo , Fosfatos de Inositol/metabolismo , Enzimas Multifuncionais/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Pirofosfatases/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
10.
mBio ; 13(3): e0103422, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35536002

RESUMO

Inositol pyrophosphates (IPPs) are signaling molecules that regulate cellular phosphate homeostasis in diverse eukaryal taxa. In fission yeast, mutations that increase 1,5-IP8 derepress the PHO regulon while mutations that ablate IP8 synthesis are PHO hyper-repressive. Fission yeast Asp1, the principal agent of 1,5-IP8 dynamics, is a bifunctional enzyme composed of an N-terminal IPP kinase domain and a C-terminal IPP pyrophosphatase domain. Here we conducted a biochemical characterization and mutational analysis of the autonomous Asp1 kinase domain (aa 1-385). Reaction of Asp1 kinase with IP6 and ATP resulted in both IP6 phosphorylation to 1-IP7 and hydrolysis of the ATP γ-phosphate, with near-equal partitioning between productive 1-IP7 synthesis and unproductive ATP hydrolysis under optimal kinase conditions. By contrast, reaction of Asp1 kinase with 5-IP7 is 22-fold faster than with IP6 and is strongly biased in favor of IP8 synthesis versus ATP hydrolysis. Alanine scanning identified essential constituents of the active site. We deployed the Ala mutants to show that derepression of pho1 expression correlated with Asp1's kinase activity. In the case of full-length Asp1, the activity of the C-terminal pyrophosphatase domain stifled net phosphorylation of the 1-position during reaction of Asp1 with ATP and either IP6 or 5-IP7. We report that inorganic phosphate is a concentration-dependent enabler of net IP8 synthesis by full-length Asp1 in vitro, by virtue of its antagonism of IP8 turnover. IMPORTANCE Expression of the fission yeast phosphate regulon is sensitive to the intracellular level of the inositol pyrophosphate (IPP) signaling molecule 1,5-IP8. IP8 dynamics are determined by Asp1, a bifunctional enzyme comprising N-terminal IPP 1-kinase and C-terminal IPP 1-pyrophosphatase domains that catalyze IP8 synthesis and catabolism, respectively. Here, we interrogated the activities and specificities of the Asp1 kinase domain and full length Asp1. We find that reaction of Asp1 kinase with 5-IP7 is 22-fold faster than with IP6 and is strongly biased in favor of IP8 synthesis versus the significant unproductive ATP hydrolysis seen during its reaction with IP6. We report that full-length Asp1 catalyzes futile cycles of 1-phosphate phosphorylation by its kinase component and 1-pyrophosphate hydrolysis by its pyrophosphatase component that result in unproductive net consumption of the ATP substrate. Net synthesis of 1,5-IP8 is enabled by physiological concentrations of inorganic phosphate that selectively antagonize IP8 turnover.


Assuntos
Fosfatase Ácida , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Fosfatase Ácida/química , Fosfatase Ácida/metabolismo , Trifosfato de Adenosina/metabolismo , Difosfatos/metabolismo , Expressão Gênica , Fosfatos de Inositol/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Pirofosfatases/genética , Pirofosfatases/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
11.
mBio ; 13(1): e0347621, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012333

RESUMO

Inositol pyrophosphate (IPP) dynamics govern expression of the fission yeast phosphate homeostasis regulon via their effects on lncRNA-mediated transcription interference. The growth defects (ranging from sickness to lethality) elicited by fission yeast mutations that inactivate IPP pyrophosphatase enzymes are exerted via the agonistic effects of too much 1,5-IP8 on RNA 3'-processing and transcription termination. To illuminate determinants of IPP toxicosis, we conducted a genetic screen for spontaneous mutations that suppressed the sickness of Asp1 pyrophosphatase mutants. We identified a missense mutation, C823R, in the essential Cft1 subunit of the cleavage and polyadenylation factor complex that suppresses even lethal Asp1 IPP pyrophosphatase mutations, thereby fortifying the case for 3'-processing/termination as the target of IPP toxicity. The suppressor screen also identified Gde1 and Spx1 (SPAC6B12.07c), both of which have an IPP-binding SPX domain and both of which are required for lethality elicited by Asp1 mutations. A survey of other SPX proteins in the proteome identified the Vtc4 and Vtc2 subunits of the vacuolar polyphosphate polymerase as additional agents of IPP toxicosis. Gde1, Spx1, and Vtc4 contain enzymatic modules (glycerophosphodiesterase, RING finger ubiquitin ligase, and polyphosphate polymerase, respectively) fused to their IPP-sensing SPX domains. Structure-guided mutagenesis of the IPP-binding sites and the catalytic domains of Gde1 and Spx1 indicated that both modules are necessary to elicit IPP toxicity. Whereas Vtc4 polymerase catalytic activity is required for IPP toxicity, its IPP-binding site is not. Epistasis analysis, transcriptome profiling, and assays of Pho1 expression implicate Spx1 as a transducer of IP8 signaling to the 3'-processing/transcription termination machinery. IMPORTANCE Impeding the catabolism of the inositol pyrophosphate (IPP) signaling molecule IP8 is cytotoxic to fission yeast. Here, by performing a genetic suppressor screen, we identified several cellular proteins required for IPP toxicosis. Alleviation of IPP lethality by a missense mutation in the essential Cft1 subunit of the cleavage and polyadenylation factor consolidates previous evidence that toxicity results from IP8 action as an agonist of RNA 3'-processing and transcription termination. Novel findings are that IP8 toxicity depends on IPP-sensing SPX domain proteins with associated enzymatic functions: Gde1 (glycerophosphodiesterase), Spx1 (ubiquitin ligase), and Vtc2/4 (polyphosphate polymerase). The effects of Spx1 deletion on phosphate homeostasis imply a role for Spx1 in communicating an IP8-driven signal to the transcription and RNA processing apparatus.


Assuntos
Difosfatos , Proteínas Fúngicas , Pirofosfatases , Schizosaccharomyces , Difosfatos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fosfatos de Inositol/metabolismo , Ligases/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Polifosfatos/metabolismo , Pirofosfatases/genética , Pirofosfatases/metabolismo , RNA/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
12.
Nucleic Acids Res ; 50(2): 803-819, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34967420

RESUMO

Expression of fission yeast Pho1 acid phosphatase is repressed under phosphate-replete conditions by transcription of an upstream prt lncRNA that interferes with the pho1 mRNA promoter. lncRNA control of pho1 mRNA synthesis is influenced by inositol pyrophosphate (IPP) kinase Asp1, deletion of which results in pho1 hyper-repression. A forward genetic screen for ADS (Asp1 Deletion Suppressor) mutations identified the 14-3-3 protein Rad24 as a governor of phosphate homeostasis. Production of full-length interfering prt lncRNA was squelched in rad24Δ cells, concomitant with increased production of pho1 mRNA and increased Pho1 activity, while shorter precociously terminated non-interfering prt transcripts persisted. Epistasis analysis showed that pho1 de-repression by rad24Δ depends on: (i) 3'-processing and transcription termination factors CPF, Pin1, and Rhn1; and (ii) Threonine-4 of the Pol2 CTD. Combining rad24Δ with the IPP pyrophosphatase-dead asp1-H397A allele caused a severe synthetic growth defect that was ameliorated by loss-of-function mutations in CPF, Pin1, and Rhn1, and by CTD phospho-site mutations T4A and Y1F. Rad24 function in repressing pho1 was effaced by mutation of its phosphate-binding pocket. Our findings instate a new role for a 14-3-3 protein as an antagonist of precocious RNA 3'-processing/termination.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transcrição Gênica , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/química , Modelos Moleculares , Mutagênese , Mutação , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Interferência de RNA , RNA Longo não Codificante/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Deleção de Sequência , Relação Estrutura-Atividade , Mutações Sintéticas Letais , Terminação da Transcrição Genética , Sequenciamento Completo do Genoma
13.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389684

RESUMO

The system of long noncoding RNA (lncRNA)-mediated transcriptional interference that represses fission yeast phosphate homoeostasis gene pho1 provides a sensitive readout of genetic influences on cotranscriptional 3'-processing and termination and a tool for discovery of regulators of this phase of the Pol2 transcription cycle. Here, we conducted a genetic screen for relief of transcriptional interference that unveiled a mechanism by which Pol2 termination is enhanced via a gain-of-function mutation, G476S, in the RNA-binding domain of an essential termination factor, Seb1. The genetic and physical evidence for gain-of-function is compelling: 1) seb1-G476S de-represses pho1 and tgp1, both of which are subject to lncRNA-mediated transcriptional interference; 2) seb1-G476S elicits precocious lncRNA transcription termination in response to lncRNA 5'-proximal poly(A) signals; 3) seb1-G476S derepression of pho1 is effaced by loss-of-function mutations in cleavage and polyadenylation factor (CPF) subunits and termination factor Rhn1; 4) synthetic lethality of seb1-G476S with pho1 derepressive mutants rpb1-CTD-S7A and aps1∆ is rescued by CPF/Rhn1 loss-of-function alleles; and 5) seb1-G476S elicits an upstream shift in poly(A) site preference in several messenger RNA genes. A crystal structure of the Seb1-G476S RNA-binding domain indicates potential for gain of contacts from Ser476 to RNA nucleobases. To our knowledge, this is a unique instance of a gain-of-function phenotype in a eukaryal transcription termination protein.


Assuntos
Proteínas Fúngicas/metabolismo , Mutação com Ganho de Função , Regulação Fúngica da Expressão Gênica/fisiologia , Schizosaccharomyces/metabolismo , Sobrevivência Celular , Difosfatos/metabolismo , Proteínas Fúngicas/genética , Subunidades Proteicas , RNA Longo não Codificante , Schizosaccharomyces/genética , Terminação da Transcrição Genética
14.
PLoS Genet ; 17(3): e1009452, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33711009

RESUMO

Fission yeast Cleavage and Polyadenylation Factor (CPF), a 13-subunit complex, executes the cotranscriptional 3' processing of RNA polymerase II (Pol2) transcripts that precedes transcription termination. The three-subunit DPS sub-complex of CPF, consisting of a PP1-type phosphoprotein phosphatase Dis2, a WD-repeat protein Swd22, and a putative phosphatase regulatory factor Ppn1, associates with the CPF core to form the holo-CPF assembly. Here we probed the functional, physical, and genetic interactions of DPS by focusing on the Ppn1 subunit, which mediates association of DPS with the core. Transcriptional profiling by RNA-seq defined limited but highly concordant sets of protein-coding genes that were dysregulated in ppn1Δ, swd22Δ and dis2Δ cells, which included the DPSΔ down-regulated phosphate homeostasis genes pho1 and pho84 that are controlled by lncRNA-mediated transcriptional interference. Essential and inessential modules of the 710-aa Ppn1 protein were defined by testing the effects of Ppn1 truncations in multiple genetic backgrounds in which Ppn1 is required for growth. An N-terminal 172-aa disordered region was dispensable and its deletion alleviated hypomorphic phenotypes caused by deleting C-terminal aa 640-710. A TFIIS-like domain (aa 173-330) was not required for viability but was important for Ppn1 activity in phosphate homeostasis. Distinct sites within Ppn1 for binding to Dis2 (spanning Ppn1 aa 506 to 532) and Swd22 (from Ppn1 aa 533 to 578) were demarcated by yeast two-hybrid assays. Dis2 interaction-defective missense mutants of full-length Ppn1 (that retained Swd22 interaction) were employed to show that binding to Dis2 (or its paralog Sds21) was necessary for Ppn1 biological activity. Ppn1 function was severely compromised by missense mutations that selectively affected its binding to Swd22.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 1/metabolismo , Schizosaccharomyces/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Alelos , Sequência de Aminoácidos , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Modelos Biológicos , Mutação , Fenótipo , Fosforilação , Transcrição Gênica , Transcriptoma , Fatores de Poliadenilação e Clivagem de mRNA/química
15.
RNA ; 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579781

RESUMO

The carboxyl-terminal domain (CTD) of RNA polymerase II (Pol2) consists of tandem repeats of a consensus heptapeptide Y1 S2 P3 T4 S5 P6 S7 The CTD recruits numerous proteins that drive or regulate gene expression. The trafficking of CTD-interacting proteins is orchestrated by remodeling CTD primary structure via Ser/Thr/Tyr phosphorylation and proline cis-trans isomerization, which collectively inscribe a CTD code. The fission yeast CTD consists of 29 heptad repeats. To decipher the output of the fission yeast CTD code, we genetically manipulated CTD length and amino acid content and then gauged the effects of these changes on gene expression. Whereas deleting 11 consensus heptads has no obvious effect on fission yeast growth, RNA-seq revealed that 25% of the protein-coding transcripts were dysregulated by CTD truncation. We profiled the transcriptomes of full-length CTD mutants, in which: all Tyr1 residues were replaced by Phe; all Ser2, Thr4, or Ser7 positions were changed to Ala; and half of the essential CTD code "letters" Pro3, Ser5, and Pro6 were mutated to Ala. Overlapping RNA-seq profiles suggested that a quarter of the complement of up-regulated mRNAs and half of the down-regulated mRNAs seen in full-length CTD mutants might be attributable to a decrement in wild-type CTD heptad number. Concordant mutant-specific transcriptional profiles were observed for Y1F, S2A, and T4A cells, and for P6•P6A and S5•S5A cells, suggesting that Tyr1-Ser2-Thr4 and Ser5-Pro6 comprise distinct "words" in the fission yeast CTD code. The phosphate regulon, which is repressed by lncRNA-mediated transcription interference, is de-repressed by CTD mutations P6•P6A and S5•S5A. De-repression of pho1 in P6•P6A and S5•S5A cells depends on cleavage and polyadenylation factor subunits Swd22 and Ppn1 and transcription termination factor Rhn1, signifying that Pro6 and Ser5 mutations elicit precocious lncRNA 3'-processing/termination.

16.
RNA ; 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509912

RESUMO

The enzyme Tpt1 is an essential agent of fungal tRNA splicing that removes an internal RNA 2'-PO4 generated by fungal tRNA ligase. Tpt1 performs a two-step reaction in which: (i) the 2'-PO4 attacks NAD+ to form an RNA-2'-phospho-(ADP-ribose) intermediate; and (ii) transesterification of the ADP-ribose O2'' to the RNA 2'-phosphodiester yields 2'-OH RNA and ADP-ribose-1'',2''-cyclic phosphate. Because Tpt1 does not participate in metazoan tRNA splicing, and Tpt1 knockout has no apparent impact on mammalian physiology, Tpt1 is considered a potential anti-fungal drug target. Here we characterize Tpt1 enzymes from four human fungal pathogens: Coccidioides immitis, the agent of Valley Fever; Aspergillus fumigatus and Candida albicans, which cause invasive, often fatal, infections in immunocompromised hosts; and Candida auris, an emerging pathogen that is resistant to current therapies. All four pathogen Tpt1s were active in vivo in complementing a lethal Saccharomyces cerevisiae tpt1∆ mutation and in vitro in NAD+-dependent conversion of a 2'-PO4 to a 2'-OH. The fungal Tpt1s utilized nicotinamide hypoxanthine dinucleotide as a substrate in lieu of NAD+, albeit with much lower affinity, whereas nicotinic acid adenine dinucleotide was ineffective. Fungal Tpt1s efficiently removed an internal ribonucleotide 2'-phosphate from an otherwise all-DNA substrate. Replacement of an RNA ribose-2'-PO4 nucleotide with arabinose-2'-PO4 diminished enzyme specific activity by ≥2000-fold and selectively slowed step 2 of the reaction pathway, resulting in transient accumulation of an ara-2'-phospho-ADP-ribosylated intermediate. Our results implicate the 2'-PO4 ribonucleotide as the principal determinant of fungal Tpt1 nucleic acid substrate specificity.

17.
Nucleic Acids Res ; 48(19): 10739-10752, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33010152

RESUMO

Fission yeast phosphate homeostasis genes are repressed in phosphate-rich medium by transcription of upstream lncRNAs that interferes with activation of the flanking mRNA promoters. lncRNA control of PHO gene expression is influenced by the Thr4 phospho-site in the RNA polymerase II CTD and the 3' processing/termination factors CPF and Rhn1, mutations of which result in hyper-repression of the PHO regulon. Here, we performed a forward genetic screen for mutations that de-repress Pho1 acid phosphatase expression in CTD-T4A cells. Sequencing of 18 independent STF (Suppressor of Threonine Four) isolates revealed, in every case, a mutation in the C-terminal pyrophosphatase domain of Asp1, a bifunctional inositol pyrophosphate (IPP) kinase/pyrophosphatase that interconverts 5-IP7 and 1,5-IP8. Focused characterization of two STF strains identified 51 coding genes coordinately upregulated vis-à-vis the parental T4A strain, including all three PHO regulon genes (pho1, pho84, tgp1). Whereas these STF alleles-asp1-386(Stop) and asp1-493(Stop)-were lethal in a wild-type CTD background, they were viable in combination with mutations in CPF and Rhn1, in which context Pho1 was also de-repressed. Our findings implicate Asp1 pyrophosphatase in constraining 1,5-IP8 or 1-IP7 synthesis by Asp1 kinase, without which 1-IPPs can accumulate to toxic levels that elicit precocious termination by CPF/Rhn1.


Assuntos
Fosfatase Ácida/genética , Proteínas do Citoesqueleto/genética , DNA Polimerase II/genética , Fosfatos de Inositol/metabolismo , Mutação , RNA Longo não Codificante/genética , Proteínas de Schizosaccharomyces pombe/genética , Fosfatase Ácida/metabolismo , Domínio Catalítico , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , DNA Polimerase II/química , DNA Polimerase II/metabolismo , Regulação Fúngica da Expressão Gênica , Enzimas Multifuncionais , Pirofosfatases , Regulon , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Mutações Sintéticas Letais , Terminação da Transcrição Genética , Regulação para Cima
18.
RNA ; 26(10): 1334-1344, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32546512

RESUMO

Fission yeast Erh1 exists in a complex with RNA-binding protein Mmi1. Deletion of erh1 up-regulates the phosphate homeostasis gene pho1, which is normally repressed by transcription in cis of a 5' flanking prt lncRNA. Here we present evidence that de-repression of pho1 by erh1Δ is achieved through precocious 3'-processing/termination of prt lncRNA synthesis, to wit: (i) erh1Δ does not affect the activity of the prt or pho1 promoters per se; (ii) de-repression by erh1Δ depends on CPF (cleavage and polyadenylation factor) subunits Ctf1, Dis2, Ssu72, Swd22, and Ppn1 and on termination factor Rhn1; (iii) de-repression requires synthesis by the Asp1 IPP kinase of inositol 1-pyrophosphates (1-IPPs); (iv) de-repression is effaced by mutating Thr4 of the RNA polymerase II CTD to alanine; and (v) erh1Δ exerts an additive effect on pho1 de-repression in combination with mutating CTD Ser7 to alanine and with deletion of the IPP pyrophosphatase Aps1. These findings point to Erh1 as an antagonist of lncRNA termination in the prt-pho1 axis. In contrast, in mmi1Δ cells there is a reduction in pho1 mRNA and increase in the formation of a prt-pho1 read-through transcript, consistent with Mmi1 being an agonist of prt termination. We envision that Erh1 acts as a brake on Mmi1's ability to promote CPF-dependent termination during prt lncRNA synthesis. Consistent with this idea, erh1Δ de-repression of pho1 was eliminated by mutating the Mmi1-binding sites in the prt lncRNA.


Assuntos
Fosfatase Ácida/genética , Proteínas de Transporte/genética , Regulação Fúngica da Expressão Gênica/genética , RNA Longo não Codificante/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Terminação da Transcrição Genética/fisiologia , Fosfatos de Inositol/genética , Regiões Promotoras Genéticas/genética , RNA Polimerase II/genética , RNA Mensageiro/genética
19.
Nucleic Acids Res ; 48(9): 4811-4826, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32282918

RESUMO

The phosphorylation pattern of Pol2 CTD Y1S2P3T4S5P6S7 repeats comprises an informational code coordinating transcription and RNA processing. cis-trans isomerization of CTD prolines expands the scope of the code in ways that are not well understood. Here we address this issue via analysis of fission yeast peptidyl-prolyl isomerase Pin1. A pin1Δ allele that does not affect growth per se is lethal in the absence of cleavage-polyadenylation factor (CPF) subunits Ppn1 and Swd22 and elicits growth defects absent CPF subunits Ctf1 and Dis2 and termination factor Rhn1. Whereas CTD S2A, T4A, and S7A mutants thrive in combination with pin1Δ, a Y1F mutant does not, nor do CTD mutants in which half the Pro3 or Pro6 residues are replaced by alanine. Phosphate-acquisition genes pho1, pho84 and tgp1 are repressed by upstream lncRNAs and are sensitive to changes in lncRNA 3' processing/termination. pin1Δ hyper-represses PHO gene expression and erases the de-repressive effect of CTD-S7A. Transcriptional profiling delineated sets of 56 and 22 protein-coding genes that are down-regulated and up-regulated in pin1Δ cells, respectively, 77% and 100% of which are downregulated/upregulated when the cis-proline-dependent Ssu72 CTD phosphatase is inactivated. Our results implicate Pin1 as a positive effector of 3' processing/termination that acts via Ssu72.


Assuntos
Proteínas de Ciclo Celular/genética , Regulação Fúngica da Expressão Gênica , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase/genética , Fosfoproteínas Fosfatases/genética , Processamento de Terminações 3' de RNA , Proteínas de Schizosaccharomyces pombe/genética , Terminação da Transcrição Genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/genética , Deleção de Genes , Peptidilprolil Isomerase de Interação com NIMA/química , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Proteínas Nucleares/genética , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Fosfatos/metabolismo , Fosforilação , Domínios Proteicos/genética , Pirofosfatases/genética , RNA Polimerase II/genética , RNA-Seq , Regulon , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Serina/metabolismo , Treonina/metabolismo
20.
Nucleic Acids Res ; 47(22): 11826-11838, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31722405

RESUMO

Fungal tRNA ligase (Trl1) rectifies RNA breaks with 2',3'-cyclic-PO4 and 5'-OH termini. Trl1 consists of three catalytic modules: an N-terminal ligase (LIG) domain; a central polynucleotide kinase (KIN) domain; and a C-terminal cyclic phosphodiesterase (CPD) domain. Trl1 enzymes found in all human fungal pathogens are untapped targets for antifungal drug discovery. Here we report a 1.9 Å crystal structure of Trl1 KIN-CPD from the pathogenic fungus Candida albicans, which adopts an extended conformation in which separate KIN and CPD domains are connected by an unstructured linker. CPD belongs to the 2H phosphotransferase superfamily by dint of its conserved central concave ß sheet and interactions of its dual HxT motif histidines and threonines with phosphate in the active site. Additional active site motifs conserved among the fungal CPD clade of 2H enzymes are identified. We present structures of the Candida Trl1 KIN domain at 1.5 to 2.0 Å resolution-as apoenzyme and in complexes with GTP•Mg2+, IDP•PO4, and dGDP•PO4-that highlight conformational switches in the G-loop (which recognizes the guanine base) and lid-loop (poised over the nucleotide phosphates) that accompany nucleotide binding.


Assuntos
Domínio Catalítico , Guanosina Trifosfato/metabolismo , RNA Ligase (ATP)/química , RNA Ligase (ATP)/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Candida albicans , Domínio Catalítico/genética , Cristalografia por Raios X , Modelos Moleculares , Nucleotidases/química , Polinucleotídeo 5'-Hidroxiquinase/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , RNA Ligase (ATP)/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...