Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Lett ; 370: 66-73, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36122649

RESUMO

Ambient particulate matter (PM) exposure increases risk for cardiopulmonary health problems which may be exacerbated in a stressful environment. Co-exposure to PM and stress characterizes the experience of many deployed military personnel and first responders but has not been thoroughly investigated. This is especially relevant to military personnel who have been exposed to high PM levels in conjunction with stressful military conflict situations. To understand the mechanisms and time-course of the health consequences following burn pit exposure, we exposed mice to moderate levels of ambient PM less than 2.5 µM in diameter (PM2.5) alone or in combination with psychological stress. We found male mice exposed to PM2.5 alone or in combination with stress had significantly reduced pulmonary function when subjected to methacholine, indicating increased airway hyperreactivity. These mice experienced increased goblet cell hyperplasia in their lungs, with no change in alveolar density. Mice exposed to PM2.5 and/or stress also exhibited reduced cardiac contractility, right ventricular (RV) output, and changes in RV capillary density and cardiac inflammatory markers. Taken together, these data indicate that short-term exposure to PM2.5 with or without stress causes a clear reduction in pulmonary and cardiac function. We believe that this model is well-suited for the study of military and other occupational exposures, and future work will identify potential mechanisms, including the inflammatory progression of these co-exposures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Cardiopatias , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Animais , Exposição Ambiental , Pulmão/química , Masculino , Cloreto de Metacolina , Camundongos , Material Particulado/análise , Material Particulado/toxicidade , Estresse Psicológico/complicações
2.
J Biol Chem ; 296: 100507, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33675749

RESUMO

Cardiovascular disease (CVD) remains the most common cause of adult morbidity and mortality in developed nations. As a result, predisposition for CVD is increasingly important to understand. Ankyrins are intracellular proteins required for the maintenance of membrane domains. Canonical ankyrin-G (AnkG) has been shown to be vital for normal cardiac function, specifically cardiac excitability, via targeting and regulation of the cardiac voltage-gated sodium channel. Noncanonical (giant) AnkG isoforms play a key role in neuronal membrane biogenesis and excitability, with evidence for human neurologic disease when aberrant. However, the role of giant AnkG in cardiovascular tissue has yet to be explored. Here, we identify giant AnkG in the myocardium and identify that it is enriched in 1-week-old mice. Using a new mouse model lacking giant AnkG expression in myocytes, we identify that young mice displayed a dilated cardiomyopathy phenotype with aberrant electrical conduction and enhanced arrhythmogenicity. Structural and electrical dysfunction occurred at 1 week of age, when giant AnkG was highly expressed and did not appreciably change in adulthood until advanced age. At a cellular level, loss of giant AnkG results in delayed and early afterdepolarizations. However, surprisingly, giant AnkG cKO myocytes display normal INa, but abnormal myocyte contractility, suggesting unique roles of the large isoform in the heart. Finally, transcript analysis provided evidence for unique pathways that may contribute to the structural and electrical findings shown in giant AnkG cKO animals. In summary, we identify a critical role for giant AnkG that adds to the diversity of ankyrin function in the heart.


Assuntos
Coração/fisiologia , Miócitos Cardíacos/fisiologia , Neurônios/fisiologia , Proteínas de Transporte de Fosfato/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/citologia , Neurônios/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...