Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 206, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355745

RESUMO

The water footprint of a crop (WF) is a common metric for assessing agricultural water consumption and productivity. To provide an update and methodological enhancement of existing WF datasets, we apply a global process-based crop model to quantify consumptive WFs of 175 individual crops at a 5 arcminute resolution over the 1990-2019 period. This model simulates the daily crop growth and vertical water balance considering local environmental conditions, crop characteristics, and farm management. We partition WFs into green (water from precipitation) and blue (from irrigation or capillary rise), and differentiate between rainfed and irrigated production systems. The outputs include gridded datasets and national averages for unit water footprints (expressed in m3 t-1 yr-1), water footprints of production (m3 yr-1), and crop water use (mm yr-1). We compare our estimates to other global studies covering different historical periods and methodological approaches. Provided outputs can offer insights into spatial and temporal patterns of agricultural water consumption and serve as inputs for further virtual water trade studies, life cycle and water footprint assessments.

2.
Sci Total Environ ; 914: 169807, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211873

RESUMO

China has formulated several policies to alleviate the water pollution load, but few studies have quantitatively analyzed their impacts on future water pollution loads in China. Based on grey water footprint (GWF) assessment and scenario simulation, we analyze the water pollution (including COD, NH3-N, TN and TP) in China from 2021 to 2035 under different scenarios for three areas: consumption-side, production-side and terminal treatment. We find that under the current policy scenario, the GWF of COD, NH3-N, TN, and TP in China could be reduced by 15.0 % to 39.9 %; the most effective measures for GWF reduction are diet structure change (in the consumption-side area), and the wastewater treatment rate and livestock manure utilization improvement (in the terminal treatment area). However, the GWF will still increase in 8 provinces, indicating that the current implemented policy is not universally effective in reducing GWF across all provinces. Under the technical improvement scenario, the GWF of the four pollutants will decrease by 54.9 %-71.1 % via improvements in the current measures related to current policies and new measures in the production-side area and the terminal treatment area; thus, GWF reduction is possible in all 31 provinces. However, some policies face significant challenges in achieving full implementation, and certain policies are only applicable to a subset of provinces. Our detailed analysis of future water pollution scenarios and response options to reduce pollution loads can help to inform the protection of freshwater resources in China and quantitatively assess the effectiveness of policies in other fields.

3.
Nat Commun ; 14(1): 2727, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169782

RESUMO

Capital assets such as machinery and infrastructure contribute substantially to CO2 emissions over their lifetime. Unique features of capital assets such as their long durability complicate the assignment of capital-associated CO2 emissions to final beneficiaries. Whereas conventional approaches allocate emissions required to produce capital assets to the year of formation, we propose an alternative perspective through allocating required emissions from the production of assets over their entire lifespans. We show that allocating CO2 emissions embodied in capital assets over time relieves emission responsibility for the year of formation, with 25‒46% reductions from conventional emission accounts. This temporal allocation, although virtual, is important for assessing the equity of CO2 emissions across generations due to the inertia of capital assets. To re-allocate emission responsibilities to the future, we design three capital investment scenarios with different investment purposes until 2030. Overall, the existing capital in 2017 will still carry approximately 10% responsibilities of China's CO2 emissions in 2030, and could reach more than 40% for capital-intensive service sectors.

4.
Earths Future ; 10(9): e2021EF002095, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36583139

RESUMO

In this study, we simulate the crop yield and water footprint (WF) of major food crops of Iran on irrigated and rainfed croplands for the historical and the future climate. We assess the effects of three agricultural adaptation strategies to climate change in terms of potential blue water savings. We then evaluate to what extent these savings can reduce unsustainable blue WF. We find that cereal production increases under climate change in both irrigated and rainfed croplands (by 2.6-3.1 and 1.4-2.3 million t yr-1, respectively) due to increased yields (6.6%-78.7%). Simultaneously, the unit WF (m3 t-1) tends to decrease in most scenarios. However, the annual consumptive water use increases in both irrigated and rainfed croplands (by 0.3-1.8 and 0.5-1.7 billion m3 yr-1, respectively). This is most noticeable in the arid regions, where consumptive water use increases by roughly 70% under climate change. Off-season cultivation is the most effective adaptation strategy to alleviate additional pressure on blue water resources with blue water savings of 14-15 billion m3 yr-1. The second most effective is WF benchmarking, which results in blue water savings of 1.1-3.5 billion m3 yr-1. The early planting strategy is less effective but still leads to blue water savings of 1.7-1.9 billion m3 yr-1. In the same order of effectiveness, these three strategies can reduce blue water scarcity and unsustainable blue water use in Iran under current conditions. However, we find that these strategies do not mitigate water scarcity in all provinces per se, nor all months of the year.

5.
Nat Food ; 2(11): 873-885, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-37117503

RESUMO

Potential climate-related impacts on future crop yield are a major societal concern. Previous projections of the Agricultural Model Intercomparison and Improvement Project's Global Gridded Crop Model Intercomparison based on the Coupled Model Intercomparison Project Phase 5 identified substantial climate impacts on all major crops, but associated uncertainties were substantial. Here we report new twenty-first-century projections using ensembles of latest-generation crop and climate models. Results suggest markedly more pessimistic yield responses for maize, soybean and rice compared to the original ensemble. Mean end-of-century maize productivity is shifted from +5% to -6% (SSP126) and from +1% to -24% (SSP585)-explained by warmer climate projections and improved crop model sensitivities. In contrast, wheat shows stronger gains (+9% shifted to +18%, SSP585), linked to higher CO2 concentrations and expanded high-latitude gains. The 'emergence' of climate impacts consistently occurs earlier in the new projections-before 2040 for several main producing regions. While future yield estimates remain uncertain, these results suggest that major breadbasket regions will face distinct anthropogenic climatic risks sooner than previously anticipated.

6.
Earths Future ; 8(2): e2019EF001363, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32715009

RESUMO

Increased water demand and overexploitation of limited freshwater resources lead to water scarcity, economic downturn, and conflicts over water in many places around the world. A sensible policy measure to bridle humanity's water footprint, then, is to set local and time-specific water footprint caps, to ensure that water appropriation for human uses remains within ecological boundaries. This study estimates-for all river basins in the world-monthly blue water flows that can be allocated to human uses, while explicitly earmarking water for nature. Addressing some implications of temporal variability, we quantify trade-offs between potentially violating environmental flow requirements versus underutilizing available flow-a trade-off that is particularly pronounced in basins with a high seasonal and interannual variability. We discuss several limitations and challenges that need to be overcome if setting water footprint caps is to become a practically applicable policy instrument, including the need (for policy makers) to reach agreement on which specific capping procedure to follow. We conclude by relating local and time-specific water footprint caps to the planetary boundary for freshwater use.

8.
Proc Natl Acad Sci U S A ; 116(11): 4893-4898, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804199

RESUMO

Green water--rainfall over land that eventually flows back to the atmosphere as evapotranspiration--is the main source of water to produce food, feed, fiber, timber, and bioenergy. To understand how freshwater scarcity constrains production of these goods, we need to consider limits to the green water footprint (WFg), the green water flow allocated to human society. However, research traditionally focuses on scarcity of blue water--groundwater and surface water. Here we expand the debate on water scarcity by considering green water scarcity (WSg). At 5 × 5 arc-minute spatial resolution, we quantify WFg and the maximum sustainable level to this footprint (WFg,m), while accounting for green water requirements to support biodiversity. We then estimate WSg per country as the ratio of the national aggregate WFg to the national aggregate WFg,m We find that globally WFg amounts to 56% of WFg,m, and overshoots it in several places, for example in countries in Europe, Central America, the Middle East, and South Asia. The sustainably available green water flows in these countries are mostly or fully allocated to human activities (predominately agriculture and forestry), occasionally at the cost of green water flows earmarked for nature. By ignoring limits to the growing human WFg, we risk further loss of ecosystem values that depend on the remaining untouched green water flows. We emphasize that green water is a critical and limited resource that should explicitly be part of any assessment of water scarcity, food security, or bioenergy potential.


Assuntos
Biocombustíveis , Alimentos , Chuva , Recursos Hídricos , Madeira , Geografia , Humanos
9.
PLoS One ; 9(6): e99705, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24919194

RESUMO

A Water Footprint Assessment is carried out for Morocco, mapping the water footprint of different activities at river basin and monthly scale, distinguishing between surface- and groundwater. The paper aims to demonstrate the added value of detailed analysis of the human water footprint within a country and thorough assessment of the virtual water flows leaving and entering a country for formulating national water policy. Green, blue and grey water footprint estimates and virtual water flows are mainly derived from a previous grid-based (5 × 5 arc minute) global study for the period 1996-2005. These estimates are placed in the context of monthly natural runoff and waste assimilation capacity per river basin derived from Moroccan data sources. The study finds that: (i) evaporation from storage reservoirs is the second largest form of blue water consumption in Morocco, after irrigated crop production; (ii) Morocco's water and land resources are mainly used to produce relatively low-value (in US$/m3 and US$/ha) crops such as cereals, olives and almonds; (iii) most of the virtual water export from Morocco relates to the export of products with a relatively low economic water productivity (in US$/m3); (iv) blue water scarcity on a monthly scale is severe in all river basins and pressure on groundwater resources by abstractions and nitrate pollution is considerable in most basins; (v) the estimated potential water savings by partial relocation of crops to basins where they consume less water and by reducing water footprints of crops down to benchmark levels are significant compared to demand reducing and supply increasing measures considered in Morocco's national water strategy.


Assuntos
Água Subterrânea/normas , Recursos Hídricos/normas , Produtos Agrícolas/economia , Poluição Ambiental , Humanos , Marrocos , Nitratos/química , Políticas , Rios , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...