Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 151(6): 1646-1654, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36716825

RESUMO

BACKGROUND: Increased prevalence of autoantibody Fab glycosylation has been demonstrated for several autoimmune diseases. OBJECTIVES: To study whether elevated Fab glycosylation is a common feature of autoimmunity, this study investigated Fab glycosylation levels on serum IgG and its subclasses for autoantibodies associated with a range of different B cell-mediated autoimmune diseases, including rheumatoid arthritis, myasthenia gravis subtypes, pemphigus vulgaris, antineutrophil cytoplasmic antibody-associated vasculitis, systemic lupus erythematosus, anti-glomerular basement membrane glomerulonephritis, thrombotic thrombocytopenic purpura, and Guillain-Barré syndrome. METHODS: The level of Fab glycosylated IgG antibodies was assessed by lectin affinity chromatography and autoantigen-specific immunoassays. RESULTS: In 6 of 10 autoantibody responses, in 5 of 8 diseases, the investigators found increased levels of Fab glycosylation on IgG autoantibodies that varied from 86% in rheumatoid arthritis to 26% in systemic lupus erythematosus. Elevated autoantibody Fab glycosylation was not restricted to IgG4, which is known to be prone to Fab glycosylation, but was also present in IgG1. When autoimmune diseases with a chronic disease course were compared with more acute autoimmune illnesses, increased Fab glycosylation was restricted to the chronic diseases. As a proxy for chronic autoantigen exposure, the investigators determined Fab glycosylation levels on antibodies to common latent herpes viruses, as well as to glycoprotein 120 in individuals who are chronically HIV-1-infected. Immunity to these viral antigens was not associated with increased Fab glycosylation levels, indicating that chronic antigen-stimulation as such does not lead to increased Fab glycosylation levels. CONCLUSIONS: These data indicate that in chronic but not acute B cell-mediated autoimmune diseases, disease-specific autoantibodies are enriched for Fab glycans.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Miastenia Gravis , Humanos , Autoanticorpos , Imunoglobulina G , Autoantígenos
2.
J Allergy Clin Immunol ; 150(5): 999-1010, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36336400

RESUMO

The presence of autoreactive antibodies is a hallmark of many autoimmune diseases. The effector functions of (auto)antibodies are determined by their constant domain, which defines the antibody isotype and subclass. The most prevalent isotype in serum is IgG, which is often the only isotype used in diagnostic testing. Nevertheless, autoantibody responses can have their own unique isotype/subclass profile. Because comparing autoantibody isotype profiles may yield new insights into disease pathophysiology, here we summarize the isotype/subclass profiles of the most prominent autoantibodies. Despite substantial variation between (and within) autoantibody responses, this unprecedented comparison shows that autoantibodies share distinctive isotype patterns across different diseases. Although most autoantibody responses are dominated by IgG (and mainly IgG1), several specific diseases are characterized by a predominance of IgG4. In other diseases, IgE plays a key role. Importantly, shared features of autoantibody isotype/subclass profiles are seen in clinically unrelated diseases, suggesting potentially common trajectories in response evolution, disease pathogenesis, and treatment response. Isotypes beyond IgG are scarcely investigated in many autoantibody responses, leaving substantial gaps in our understanding of the pathophysiology of autoimmune diseases. Future research should address isotype/subclass profiling in more detail and incorporate autoantibody measurements beyond total IgG in disease models and clinical studies.


Assuntos
Autoanticorpos , Doenças Autoimunes , Humanos , Imunoglobulina G
5.
Drug Resist Updat ; 53: 100728, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33070093

RESUMO

Alternative splicing is a tightly regulated process whereby non-coding sequences of pre-mRNA are removed and protein-coding segments are assembled in diverse combinations, ultimately giving rise to proteins with distinct or even opposing functions. In the past decade, whole genome/transcriptome sequencing studies revealed the high complexity of splicing regulation, which occurs co-transcriptionally and is influenced by chromatin status and mRNA modifications. Consequently, splicing profiles of both healthy and malignant cells display high diversity and alternative splicing was shown to be widely deregulated in multiple cancer types. In particular, mutations in pre-mRNA regulatory sequences, splicing regulators and chromatin modifiers, as well as differential expression of splicing factors are important contributors to cancer pathogenesis. It has become clear that these aberrations contribute to many facets of cancer, including oncogenic transformation, cancer progression, response to anticancer drug treatment as well as resistance to therapy. In this respect, alternative splicing was shown to perturb the expression a broad spectrum of relevant genes involved in drug uptake/metabolism (i.e. SLC29A1, dCK, FPGS, and TP), activation of nuclear receptor pathways (i.e. GR, AR), regulation of apoptosis (i.e. MCL1, BCL-X, and FAS) and modulation of response to immunotherapy (CD19). Furthermore, aberrant splicing constitutes an important source of novel cancer biomarkers and the spliceosome machinery represents an attractive target for a novel and rapidly expanding class of therapeutic agents. Small molecule inhibitors targeting SF3B1 or splice factor kinases were highly cytotoxic against a wide range of cancer models, including drug-resistant cells. Importantly, these effects are enhanced in specific cancer subsets, such as splicing factor-mutated and c-MYC-driven tumors. Furthermore, pre-clinical studies report synergistic effects of spliceosome modulators in combination with conventional antitumor agents. These strategies based on the use of low dose splicing modulators could shift the therapeutic window towards decreased toxicity in healthy tissues. Here we provide an extensive overview of the latest findings in the field of regulation of splicing in cancer, including molecular mechanisms by which cancer cells harness alternative splicing to drive oncogenesis and evade anticancer drug treatment as well as splicing-based vulnerabilities that can provide novel treatment opportunities. Furthermore, we discuss current challenges arising from genome-wide detection and prediction methods of aberrant splicing, as well as unravelling functional relevance of the plethora of cancer-related splicing alterations.


Assuntos
Processamento Alternativo/genética , Antineoplásicos/farmacologia , Carcinogênese/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Processamento Alternativo/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Neoplasias/genética , Fatores de Processamento de RNA/antagonistas & inibidores , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
6.
Int J Mol Sci ; 21(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545483

RESUMO

The core spliceosomal Sm proteins were recently proposed as cancer-selective lethal targets in non-small cell lung cancer (NSCLC). In contrast, the loss of the commonly mutated cancer target SF3B1 appeared to be toxic to non-malignant cells as well. In the current study, the transcriptomes of A549 NSCLC cells, in which SF3B1 or SNRPD3 was silenced, were compared using RNA sequencing. The skipping of exon 4 of the proteasomal subunit beta type-3 (PSMB3) mRNA, resulting in a shorter PSMB3-S variant, occurred only after silencing SNRPD3. This observation was extended to the other six Sm genes. Remarkably, the alternative splicing of PSMB3 mRNA upon Sm gene silencing was not observed in non-malignant IMR-90 lung fibroblasts. Furthermore, PSMB3 was found to be overexpressed in NSCLC clinical samples and PSMB3 expression correlated with Sm gene expression. Moreover, a high PSMB3 expression corresponds to worse survival in patients with lung adenocarcinomas. Finally, silencing the canonical full-length PSMB3-L, but not the shorter PSMB3-S variant, was cytotoxic and was accompanied by a decrease in proteasomal activity. Together, silencing Sm genes, but not SF3B1, causes a cytotoxic alternative splicing switch in the PSMB3 mRNA in NSCLC cells only.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Perfilação da Expressão Gênica/métodos , Neoplasias Pulmonares/genética , Fosfoproteínas/genética , Complexo de Endopeptidases do Proteassoma/genética , Fatores de Processamento de RNA/genética , Proteínas Centrais de snRNP/genética , Células A549 , Processamento Alternativo , Regulação para Baixo , Éxons , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Degradação do RNAm Mediada por Códon sem Sentido , Análise de Sequência de RNA
7.
Br J Cancer ; 123(4): 644-656, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32493992

RESUMO

BACKGROUND: Expression of proton-coupled folate transporter (PCFT) is associated with survival of mesothelioma patients treated with pemetrexed, and is reduced by hypoxia, prompting studies to elucidate their correlation. METHODS: Modulation of glycolytic gene expression was evaluated by PCR arrays in tumour cells and primary cultures growing under hypoxia, in spheroids and after PCFT silencing. Inhibitors of lactate dehydrogenase (LDH-A) were tested in vitro and in vivo. LDH-A expression was determined in tissue microarrays of radically resected malignant pleural mesothelioma (MPM, N = 33) and diffuse peritoneal mesothelioma (DMPM, N = 56) patients. RESULTS: Overexpression of hypoxia marker CAIX was associated with low PCFT expression and decreased MPM cell growth inhibition by pemetrexed. Through integration of PCR arrays in hypoxic cells and spheroids and following PCFT silencing, we identified the upregulation of LDH-A, which correlated with shorter survival of MPM and DMPM patients. Novel LDH-A inhibitors enhanced spheroid disintegration and displayed synergistic effects with pemetrexed in MPM and gemcitabine in DMPM cells. Studies with bioluminescent hypoxic orthotopic and subcutaneous DMPM athymic-mice models revealed the marked antitumour activity of the LDH-A inhibitor NHI-Glc-2, alone or combined with gemcitabine. CONCLUSIONS: This study provides novel insights into hypoxia/PCFT-dependent chemoresistance, unravelling the potential prognostic value of LDH-A, and demonstrating the preclinical activity of LDH-A inhibitors.


Assuntos
Antígenos de Neoplasias/genética , Anidrase Carbônica IX/genética , Inibidores Enzimáticos/administração & dosagem , L-Lactato Desidrogenase/genética , Mesotelioma Maligno/tratamento farmacológico , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Pleurais/tratamento farmacológico , Transportador de Folato Acoplado a Próton/genética , Animais , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Técnicas de Cultura de Células , Hipóxia Celular , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mesotelioma Maligno/genética , Mesotelioma Maligno/metabolismo , Camundongos , Pemetrexede/administração & dosagem , Pemetrexede/farmacologia , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Neoplasias Pleurais/genética , Neoplasias Pleurais/metabolismo , Transportador de Folato Acoplado a Próton/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
8.
Cancers (Basel) ; 12(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204435

RESUMO

Glucocorticoid (GC) resistance is a crucial determinant of inferior response to chemotherapy in pediatric acute lymphoblastic leukemia (ALL); however, molecular mechanisms underlying this phenomenon are poorly understood. Deregulated splicing is a common feature of many cancers, which impacts drug response and constitutes an attractive therapeutic target. Therefore, the aim of the current study was to characterize global splicing profiles associated with GC resistance and determine whether splicing modulation could serve as a novel therapeutic option for GC-resistant patients. To this end, 38 primary ALL samples were profiled using RNA-seq-based differential splicing analysis. The impact of splicing modulators was investigated in GC-resistant leukemia cell lines and primary leukemic specimens. Our findings revealed, for the first time, markedly distinct splicing landscapes in ALL samples of B-cell precursor (BCP)-ALL and T-ALL lineages. Differential splicing events associated with GC resistance were involved in RNA processing, a direct response to GCs, survival signaling, apoptosis, cell cycle regulation and energy metabolism. Furthermore, our analyses showed that GC-resistant ALL cell lines and primary samples are sensitive to splicing modulation, alone and in combination with GC. Together, these findings suggest that aberrant splicing is associated with GC resistance and splicing modulators deserve further interest as a novel treatment option for GC-resistant patients.

9.
EBioMedicine ; 39: 215-225, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30581150

RESUMO

INTRODUCTION: Therapeutic options for diffuse malignant peritoneal mesothelioma (DMPM) are limited to surgery and locoregional chemotherapy. Despite improvements in survival rates, patients eventually succumb to disease progression. We investigated splicing deregulation both as molecular prognostic factor and potential novel target in DMPM, while we tested modulators of SF3b complex for antitumor activity. METHODS: Tissue-microarrays of 64 DMPM specimens were subjected to immunohistochemical assessment of SF3B1 expression and correlation to clinical outcome. Two primary cell cultures were used for gene expression profiling and in vitro screening of SF3b modulators. Drug-induced splicing alterations affecting downstream cellular pathways were detected through RNA sequencing. Ultimately, we established bioluminescent orthotopic mouse models to test the efficacy of splicing modulation in vivo. RESULTS: Spliceosomal genes are differentially upregulated in DMPM cells compared to normal tissues and high expression of SF3B1 correlated with poor clinical outcome in univariate and multivariate analysis. SF3b modulators (Pladienolide-B, E7107, Meayamycin-B) showed potent cytotoxic activity in vitro with IC50 values in the low nanomolar range. Differential splicing analysis of Pladienolide-B-treated cells revealed abundant alterations of transcripts involved in cell cycle, apoptosis and other oncogenic pathways. This was validated by RT-PCR and functional assays. E7107 demonstrated remarkable in vivo antitumor efficacy, with significant improvement of survival rates compared to vehicle-treated controls. CONCLUSIONS: SF3B1 emerged as a novel potential prognostic factor in DMPM. Splicing modulators markedly impair cancer cell viability, resulting also in potent antitumor activity in vivo. Our data designate splicing as a promising therapeutic target in DMPM.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Neoplasias Peritoneais/tratamento farmacológico , Fosfoproteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , Splicing de RNA/efeitos dos fármacos , Análise Serial de Tecidos/métodos , Idoso , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/farmacologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Macrolídeos/administração & dosagem , Macrolídeos/farmacologia , Masculino , Mesotelioma/genética , Mesotelioma/metabolismo , Mesotelioma Maligno , Camundongos , Pessoa de Meia-Idade , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Fosfoproteínas/genética , Piranos/administração & dosagem , Piranos/farmacologia , Fatores de Processamento de RNA/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Oncotarget ; 8(32): 53068-53083, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28881794

RESUMO

Squamous cell lung carcinoma (SCC) accounts for 30% of patients with NSCLC and to date, no molecular targeted agents are approved for this type of tumor. However, recent studies have revealed several oncogenic mutations in SCC patients, including an alteration of the PI3K/AKT pathway, i.e. PI3K point mutations and amplification, AKT mutations and loss or reduced PTEN expression. Prompted by our observation of a correlation between PTEN loss and FAK phosphorylation in a cohort of patients with stage IV SCC, we evaluated the relevance of PTEN loss in cancer progression as well as the efficacy of a new combined treatment with the pan PI3K inhibitor buparlisip and the FAK inhibitor defactinib. An increase in AKT and FAK phosphorylation, associated with increased proliferation and invasiveness, paralleled by the acquisition of mesenchymal markers, and overexpression of the oncomir miR-21 were observed in SKMES-1-derived cell clones with a stable reduction of PTEN. Notably, the combined treatment induced a synergistic inhibition of cell proliferation, and a significant reduction in cell migration and invasion only in cells with reduced PTEN. The molecular mechanisms underlying these findings were unraveled using a specific RTK array that showed a reduction in phosphorylation of key kinases such as JNK, GSK-3 α/ß, and AMPK-α2, due to the concomitant decrease in AKT and FAK activation. In conclusion, the combination of buparlisib and defactinib was effective against cells with reduced PTEN and warrants further studies as a novel therapeutic strategy for stage IV SCC patients with loss of PTEN expression.

12.
J Vis Exp ; (118)2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-28060337

RESUMO

Drug resistance remains a major problem in the treatment of cancer for both hematological malignancies and solid tumors. Intrinsic or acquired resistance can be caused by a range of mechanisms, including increased drug elimination, decreased drug uptake, drug inactivation and alterations of drug targets. Recent data showed that other than by well-known genetic (mutation, amplification) and epigenetic (DNA hypermethylation, histone post-translational modification) modifications, drug resistance mechanisms might also be regulated by splicing aberrations. This is a rapidly growing field of investigation that deserves future attention in order to plan more effective therapeutic approaches. The protocol described in this paper is aimed at investigating the impact of aberrant splicing on drug resistance in solid tumors and hematological malignancies. To this goal, we analyzed the transcriptomic profiles of several in vitro models through RNA-seq and established a qRT-PCR based method to validate candidate genes. In particular, we evaluated the differential splicing of DDX5 and PKM transcripts. The aberrant splicing detected by the computational tool MATS was validated in leukemic cells, showing that different DDX5 splice variants are expressed in the parental vs. resistant cells. In these cells, we also observed a higher PKM2/PKM1 ratio, which was not detected in the Panc-1 gemcitabine-resistant counterpart compared to parental Panc-1 cells, suggesting a different mechanism of drug-resistance induced by gemcitabine exposure.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/genética , Isoformas de Proteínas/genética , Análise de Sequência de RNA , Proteínas de Transporte/genética , RNA Helicases DEAD-box/genética , Metilação de DNA , Humanos , Proteínas de Membrana/genética , Processamento de Proteína Pós-Traducional , RNA , Hormônios Tireóideos/genética , Proteínas de Ligação a Hormônio da Tireoide
13.
Oncotarget ; 6(40): 42717-32, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26015408

RESUMO

The clinical efficacy of EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) harbouring activating EGFR mutations is limited by the emergence of acquired resistance, mostly ascribed to the secondary EGFR-T790M mutation. Selective EGFR-T790M inhibitors have been proposed as a new, extremely relevant therapeutic approach. Here, we demonstrate that the novel irreversible EGFR-TKI CNX-2006, a structural analog of CO-1686, currently tested in a phase-1/2 trial, is active against in vitro and in vivo NSCLC models expressing mutant EGFR, with minimal effect on the wild-type receptor. By integration of genetic and functional analyses in isogenic cell pairs we provide evidence of the crucial role played by NF-κB1 in driving CNX-2006 acquired resistance and show that NF-κB activation may replace the oncogenic EGFR signaling in NSCLC when effective and persistent inhibition of the target is achieved in the presence of the T790M mutation. In this context, we demonstrate that the sole, either genetic or pharmacologic, inhibition of NF-κB is sufficient to reduce the viability of cells that adapted to EGFR-TKIs. Overall, our findings support the rational inhibition of members of the NF-κB pathway as a promising therapeutic option for patients who progress after treatment with novel mutant-selective EGFR-TKIs.


Assuntos
Acrilamidas/farmacologia , Azetidinas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Receptores ErbB/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , RNA Interferente Pequeno , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Curr Drug Targets ; 15(14): 1331-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483224

RESUMO

Malignant pleural mesothelioma (MPM) is a lethal disease with scarce therapeutic options, and preclinical studies on new targeted-agents are warranted. Because previous studies reported high c-Met expression and alterations in the microtubules network in most MPM samples, we evaluated the activity of tivantinib, which has been recently suggested to affect microtubule polymerization in addition to inhibiting c-Met. In four MPM cell lines tivantinib inhibited both c-Met activity and microtubule polymerization, resulting in inhibition of cell-growth with IC50s ranging between 0.3 µM (MSTO-211H) and 2.4 µM (H2052). Furthermore tivantinib synergistically enhanced the antiproliferative and proapoptotic activity of pemetrexed, as detected by sulforhodamine-B-assay and flow cytometry. The synergistic interaction was associated with reduction of thymidylate synthase expression and inhibition of migratory activity. In aggregate, these data show the ability of tivantinib to specifically target key pathways in MPM cells and synergistically interact with pemetrexed, supporting further studies on this therapeutic approach.


Assuntos
Antineoplásicos/farmacologia , Glutamatos/farmacologia , Guanina/análogos & derivados , Neoplasias Pulmonares/metabolismo , Mesotelioma/metabolismo , Neoplasias Pleurais/patologia , Pirrolidinonas/farmacologia , Quinolinas/farmacologia , Apoptose , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Guanina/farmacologia , Humanos , Neoplasias Pulmonares/genética , Mesotelioma/genética , Mesotelioma Maligno , Microtúbulos/metabolismo , Pemetrexede , Neoplasias Pleurais/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Timidilato Sintase/genética
15.
Nat Biotechnol ; 32(4): 356-63, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24633243

RESUMO

If immunized with an antigen of interest, transgenic mice with large portions of unrearranged human immunoglobulin loci can produce fully human antigen-specific antibodies; several such antibodies are in clinical use. However, technical limitations inherent to conventional transgenic technology and sequence divergence between the human and mouse immunoglobulin constant regions limit the utility of these mice. Here, using repetitive cycles of genome engineering in embryonic stem cells, we have inserted the entire human immunoglobulin variable-gene repertoire (2.7 Mb) into the mouse genome, leaving the mouse constant regions intact. These transgenic mice are viable and fertile, with an immune system resembling that of wild-type mice. Antigen immunization results in production of high-affinity antibodies with long human-like complementarity-determining region 3 (CDR3H), broad epitope coverage and strong signatures of somatic hypermutation. These mice provide a robust system for the discovery of therapeutic human monoclonal antibodies; as a surrogate readout of the human antibody response, they may also aid vaccine design efforts.


Assuntos
Anticorpos Monoclonais/genética , Engenharia Genética/métodos , Região Variável de Imunoglobulina/genética , Transgenes/genética , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Linfócitos B/imunologia , Linfócitos B/fisiologia , Cromossomos Artificiais Bacterianos/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular
16.
Eur J Med Chem ; 46(11): 5398-407, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21944286

RESUMO

Current cancer research is being increasingly focused on the study of distinctive characters of tumour metabolism, resulting in a switch from oxidative phosphorylation to glycolysis (Warburg effect). Isoform 5 of human lactate dehydrogenase (hLDH5), which catalyzes the final step in the glycolytic cascade (pyruvate to lactate), constitutes a relatively new and untapped anti-cancer target. In this study, careful design and synthesis of a selected series of aryl-substituted N-hydroxyindole-2-carboxylates (NHIs) has led to several hLDH5-inhibitors, showing "first-in-class" potency and isoform selectivity. Enzyme kinetics studies indicated that these inhibitors exhibit a competitive mode of inhibition. Some representative examples were tested against two human pancreatic carcinoma cell lines, and displayed a good anti-proliferative activity, which was even more evident under hypoxic conditions.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Indóis/química , Indóis/farmacologia , L-Lactato Desidrogenase/antagonistas & inibidores , Antineoplásicos/síntese química , Ácidos Carboxílicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Humanos , Indóis/síntese química , Concentração Inibidora 50 , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , L-Lactato Desidrogenase/química , Lactato Desidrogenase 5 , Simulação de Dinâmica Molecular , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...