Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 123(43): 9080-9086, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31584823

RESUMO

Conformational transitions involving aggregated proteins or peptides are of paramount biomedical and biotechnological importance. Here, we report an unusual freeze-induced structural reorganization within a ß-sheet-rich ionic coaggregate of poly(l-lysine), PLL, and poly(l-glutamic acid), PLGA. Freezing aqueous suspensions of the PLL-PLGA ß-aggregate in the presence of low concentrations of salt (NaBr) induces an instantaneous ß-sheet-to-disorder transition, as probed by infrared spectroscopy in the amide I' band region. The conformational rearrangement of polypeptide chains appears to be fully synchronized with the global liquid-to-ice phase transition. In contrast to the known freeze-induced transitions, the process described here is fully reversible: the subsequent thawing results in an instantaneous disorder-to-ß-sheet "refolding". However, in the absence of traces of soluble salts, the ß-sheet framework of the PLL-PLGA aggregate remains resistant to freezing as no transition is observed. We note that the occurrence of the transition depends on the type of salt present in the sample. Our results highlight a hidden dimension of the structural dynamics within ß-sheet-rich aggregates. Possible scenarios of freeze-induced salt-bridge rupture and removal of water from nanocanals are discussed.


Assuntos
Congelamento , Fragmentos de Peptídeos/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Polilisina/química , Conformação Proteica , Concentração de Íons de Hidrogênio
2.
PLoS One ; 14(6): e0218975, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31247048

RESUMO

Bovine serum albumin (BSA) is often employed as a proteinaceous component for synthesis of luminescent protein-stabilized gold nanoclusters (AuNC): intriguing systems with many potential applications. Typically, the formation of BSA-AuNC conjugate occurs under strongly alkaline conditions. Due to the sheer complexity of intertwined chemical and structural transitions taking place upon BSA-AuNC formation, the state of albumin enveloping AuNCs remains poorly characterized. Here, we study the conformational properties of BSA bound to AuNCs using an array of biophysical tools including vibrational spectroscopy, circular dichroism, fluorescence spectroscopy and trypsin digestion. The alkaline conditions of BSA-AuNC self-assembly appear to be primary responsible for the profound irreversible disruption of tertiary contacts, partial unfolding of native α-helices, hydrolysis of disulfide bonds and the protein becoming vulnerable to trypsin digestion. Further unfolding of BSA-AuNC by guanidinium hydrochloride (GdnHCl) is fully reversible equally in terms of albumin's secondary structure and conjugate's luminescent properties. This suggests that binding to AuNCs traps the albumin molecule in a state that is both partly disordered and refractory to irreversible misfolding. Indeed, when BSA-AuNC is subjected to conditions favoring self-association of BSA into amyloid-like fibrils, the buildup of non-native ß-sheet conformation is less pronounced than in a control experiment with unmodified BSA. Unexpectedly, BSA-AuNC reveals a tendency to self-assemble into giant twisted superstructures of micrometer lengths detectable with transmission electron microscopy (TEM), a property absent in unmodified BSA. The process is accompanied by ordering of bound AuNCs into elongated streaks and simultaneous decrease in fluorescence intensity. The newly discovered self-association pathway appears to be specifically accessible to protein molecules with a certain restriction on structural dynamics which in the case of BSA-AuNC arises from binding to metal nanoclusters. Our results have been discussed in the context of mechanisms of protein misfolding and applications of BSA-AuNC.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Soroalbumina Bovina/química , Sequência de Aminoácidos , Animais , Bovinos , Dicroísmo Circular , Nanopartículas Metálicas/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Agregados Proteicos , Conformação Proteica , Desnaturação Proteica , Estabilidade Proteica , Soroalbumina Bovina/genética , Soroalbumina Bovina/ultraestrutura , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
3.
J Phys Chem B ; 122(50): 11895-11905, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30427196

RESUMO

Replacing water with dimethyl sulfoxide (DMSO) completely reshapes the free-energy landscapes of solvated proteins. In DMSO, a powerful hydrogen-bond (HB) acceptor, formation of HBs between backbone NH groups and solvent is favored over HBs involving protein's carbonyl groups. This entails a profound structural disruption of globular proteins and proteinaceous aggregates (e.g., amyloid fibrils) upon transfer to DMSO. Here, we investigate an unusual DMSO-induced conformational transition of ß2-amyloid fibrils from poly-l-glutamic acid (PLGA). The infrared spectra of ß2-PLGA dissolved in DMSO lack the typical features associated with disordered conformation that are observed when amyloid fibrils from other proteins are dispersed in DMSO. Instead, the frequency and unusual narrowness of the amide I band imply the presence of highly ordered helical structures, which is supported by complementary methods, including vibrational circular dichroism and Raman optical activity. We argue that the conformation most consistent with the spectroscopic data is that of a PLGA chain essentially lacking nonhelical segments such as bends that would provide DMSO acceptors with direct access to the backbone. A structural study of DMSO-dissolved ß2-PLGA by synchrotron small-angle X-ray scattering reveals the presence of long uninterrupted helices lending direct support to this hypothesis. Our study highlights the dramatic effects that solvation may have on conformational transitions of large polypeptide assemblies.


Assuntos
Amiloide/química , Dimetil Sulfóxido/química , Ácido Poliglutâmico/química , Tamanho da Partícula
4.
PLoS One ; 12(10): e0187328, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29084264

RESUMO

Due to its symmetric structure and abundance of carboxyl groups, mellitic acid (MA-benzenehexacarboxylic acid) has an uncommon capacity to form highly ordered molecular networks. Dissolved in water, MA dissociates to yield various mellitate anions with pronounced tendencies to form complexes with cations including protonated amines. Deprotonation of MA at physiological pH produces anions with high charge densities (MA5- and MA6-) whose influence on co-dissolved proteins has not been thoroughly studied. As electrostatic attraction between highly symmetric MA6- anions and positively charged low-symmetry globular proteins could lead to interesting self-assembly patterns we have chosen hen egg white lysozyme (HEWL), a basic stably folded globular protein as a cationic partner for mellitate anions to form such hypothetical nanostructures. Indeed, mixing of neutral HEWL and MA solutions does result in precipitation of electrostatic complexes with the stoichiometry dependent on pH. We have studied the self-assembly of HEWL-MA structures using vibrational spectroscopy (infrared absorption and Raman scattering), circular dichroism (CD), atomic force microscopy (AFM). Possible HEWL-MA6- molecular docking scenarios were analyzed using computational tools. Our results indicate that even at equimolar ratios (in respect to HEWL), MA5- and MA6- anions are capable of inducing misfolding and aggregation of the protein upon mild heating which results in non-native intermolecular beta-sheet appearing in the amide I' region of the corresponding infrared spectra. The association process leads to aggregates with compacted morphologies entrapping mellitate anions. The capacity of extremely diluted mellitate anions (i.e. at sub-millimolar concentration range) to trigger aggregation of proteins is discussed in the context of mechanisms of misfolding.


Assuntos
Concentração de Íons de Hidrogênio , Muramidase/química , Animais , Dobramento de Proteína , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...