Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 32(13): 135001, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31778975

RESUMO

Oxide growth with semiconductor-like accuracy allows the fabrication of atomically precise thin films and interfaces displaying a wide range of phases and functionalities that are absent in the corresponding oxide bulk materials. Among the other properties it was found that a two-dimensional electronic gas is formed under some circumstances at the LaAlO3/SrTiO3(0 0 1) interface separating two typical insulating perovskite crystals. The origin of this conducting state has been discussed at length, since different doping mechanisms can act in these material systems. Many experimental results point to the so-called polar catastrophe scenario as the principal mechanism driving the formation of the two-dimensional electronic gas. According to this mechanism, the existence of an interfacial polar discontinuity is the key ingredient to drive an electronic reconstruction at the LaAlO3/SrTiO3(0 0 1) interface and the consequent formation of a two-dimensional electron gas. This simple picture has been often questioned by the existence of material systems whose interface are predicted being non-polar according to the simplistic 'ionic' limit but that display an electrical behavior analogous to that of LaAlO3/SrTiO3(0 0 1) interfaces. This is the case of the LaAlO3/SrTiO3(1 1 0), i.e., a LaAlO3/SrTiO3 interface with a different in-plane orientation. It is evident that to solve such kind of controversies a detailed investigation of the polar or non-polar state of these interfaces is needed, although this is not simple for the lack of experimental tools that are specifically sensitive to interfacial polarity. Here we apply Optical Second Harmonic Generation to investigate LaAlO3/SrTiO3 interfaces with different in-plane orientations to bridge this gap. By comparing our results with recent theoretical findings, we will arrive to the conclusion that the real LaAlO3/SrTiO3(1 1 0) interface is strongly polar.

2.
Chem Mater ; 31(3): 947-954, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30828131

RESUMO

Ferroelectric perovskite oxides are emerging as a promising photoactive layer for photovoltaic applications because of their very high stability and their alternative ferroelectricity-related mechanism for solar energy conversion that could lead to extraordinarily high efficiencies. One of the biggest challenges so far is to reduce their band gap toward the visible region while simultaneously retaining ferroelectricity. To address these two issues, herein an elemental composition engineering of BiFeO3 is performed by substituting Fe by Co cations, as a means to tune the characteristics of the transition metal-oxygen bond. We demonstrate by solution processing the formation of epitaxial, pure phase, and stable BiFe1-x Co x O3 thin films for x ≤ 0.3 and film thickness up to 100 nm. Importantly, the band gap can be tuned from 2.7 to 2.3 eV upon cobalt substitution while simultaneously enhancing ferroelectricity. As a proof of concept, nonoptimized vertical devices have been fabricated and, reassuringly, the electrical photoresponse in the visible region of the Co-substituted phase is improved with respect to the unsubstituted oxide.

3.
Sci Rep ; 6: 31870, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27550543

RESUMO

The multifunctional (ferromagnetic and ferroelectric) response at room temperature that is elusive in single phase multiferroic materials can be achieved in a proper combination of ferroelectric perovskites and ferrimagnetic spinel oxides in horizontal heterostructures. In this work, lead-free CoFe2O4/BaTiO3 bilayers are integrated with Si(001) using LaNiO3/CeO2/YSZ as a tri-layer buffer. They present structural and functional properties close to those achieved on perovskite substrates: the bilayers are fully epitaxial with extremely flat surface, and exhibit robust ferromagnetism and ferroelectricity at room temperature.

4.
Nat Commun ; 6: 6028, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25583368

RESUMO

The discovery of two-dimensional electron gases (2DEGs) at oxide interfaces-involving electrons in narrow d-bands-has broken new ground, enabling the access to correlated states that are unreachable in conventional semiconductors based on s- and p- electrons. There is a growing consensus that emerging properties at these novel quantum wells-such as 2D superconductivity and magnetism-are intimately connected to specific orbital symmetries in the 2DEG sub-band structure. Here we show that crystal orientation allows selective orbital occupancy, disclosing unprecedented ways to tailor the 2DEG properties. By carrying out electrostatic gating experiments in LaAlO3/SrTiO3 wells of different crystal orientations, we show that the spatial extension and anisotropy of the 2D superconductivity and the Rashba spin-orbit field can be largely modulated by controlling the 2DEG sub-band filling. Such an orientational tuning expands the possibilities for electronic engineering of 2DEGs at LaAlO3/SrTiO3 interfaces.

5.
Org Biomol Chem ; 9(23): 8178-81, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21997344

RESUMO

Oxidative aromatic coupling of meso-substituted porphyrins bearing one electron-rich naphthalene unit has been studied in detail. After thorough optimization of oxidant, naphthalene-fused porphyrins were prepared in high yield without contamination from chlorinated side-products using Fe(ClO(4))(3)·2H(2)O. Copper and nickel complexes were successfully transformed into π-expanded porphyrins in 40-83% yield.


Assuntos
Cobre/química , Naftalenos/síntese química , Níquel/química , Porfirinas/química , Estrutura Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...